

July 1965

Report 4

FLUX SWITCHING IN MULTIPATH CORES

Prepared for:

JET PROPULSION LABORATORY 4800 OAK GROVE DRIVE PASADENA, CALIFORNIA

CONTRACT 950943 UNDER NAS7-100 (Extension of work under Contract 950095 under NASw-6)

By: D. NITZAN V. W. HESTERMAN

SRI Project 5094

Approved: D. R. BROWN, MANAGER COMPUTER TECHNIQUES LABORATORY

J. D. NOE, EXECUTIVE DIRECTOR ENGINEERING SCIENCES AND INDUSTRIAL DEVELOPMENT

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100.

Copy No.

ABSTRACT

In the total $\dot{\phi}(t)$ waveform of a ferrite core switched by mmf, F(t), from negative remanence, ϕ = - ϕ_r , three components are distinguished: elastic, decaying inelastic, and main inelastic. The model for the elastic component , $\dot{\phi}_{\epsilon}$, is $\dot{\phi}_{\epsilon}$ = ϵF , where ϵ is a function of F, ϕ , and the previous switching. The model for the decaying inelastic component, $\dot{\phi}_i$, is $\dot{\phi}_i = \lambda_i (F - F_i)^{\nu_i} \exp\left[-(t - T_i)(F - F_i)/C_i\right]$, where λ_i , F_i , ν_i , and C_i are switching parameters. The model for the main inelastic component, $\dot{\phi}_{\text{ma}}, \text{ is } \dot{\phi}_{\text{ma}} = \dot{\phi}_p \{1 - [(2\phi + \phi_r - \phi_d)/(\phi_r + \phi_d)]^2\}, \text{ where } \dot{\phi}_p \text{ is the peak}$ value of $\dot{\phi}$ and ϕ_d is the ϕ value on the static $\phi(F)$ curve, both of which are given as functions of F. If F is large (compared with the coercive mmf, F_c), then $\dot{\phi}_i$ + $\dot{\phi}_{aa}$ $\stackrel{\sim}{=}$ $\dot{\phi}_p\{1 - [(2\phi + \phi_s - \phi_d)/(\phi_s + \phi_d)]^2\}$, where ϕ_s is saturation flux. A computer program is written and applied in computing $\dot{\phi}(t)$ and its components for a thin toroidal ferrite core. results agree well with experimental $\dot{\phi}(t)$ waveforms obtained by using F(t) with different rise times $(T_r = 0.1 \, \mu \text{sec})$ and $T_r = 0.02 \, \mu \text{sec}$ and different amplitudes (seven to eight values, varying from 2/3 tc more than twice F_c). A small delay (of the order of 0.15 T_c) between computed and experimental $\dot{\phi}_{\epsilon}(t)$ shows that an improved model for the elastic $\dot{\phi}$ is $\delta \dot{\phi}_{\epsilon}$ + $\dot{\phi}_{\epsilon}$ = ϵF , where δ is a constant proportional to the viscous damping. The parameters λ_i and C_i were found to be affected by T_r : as T_r decreases, λ_i increases (slightly) and C_i decreases. The flux change involved in obtaining the static $\phi(F)$ curve for low F values is much component which is either part of $\dot{\phi}_i$ or $\dot{\phi}_{aa}$ with threshold lower than F_0'' .

Numerical analyses and computer programs are given for three additional magnetic circuits: a loaded core, a core-diode-transistor binary counter, and a loaded, saturable, three-leg core. In each case, the basic problem is to solve a set of first-order nonlinear differential equations together with a transcendental solution for some of the time variables. If the load is inductive, the loaded-core program provides more exact results that agree better with experimental data than those obtained previously. The

binary-counter program includes computation vs. time of three currents and F, $\dot{\phi}$, and ϕ of each of two coupled cores during the fast-switching mode of operation of a single stage in the counter. The computed results are essentially identical with results computed by a more complex and more exact method of solution of differential equations (Runge-Kutta and Adams) and agree quite well with experimental data. The last program includes three types of computation for flux division: time variables (F, $\dot{\phi}$, and ϕ of each leg), flux-division ratio D vs. drive amplitude for different loads, and D vs. leg-length ratio for different loads and drive amplitude. The agreement between computed and measured D vs. NI is satisfactory except for very low values of drive mmf.

The switching properties of a thin-ring core in response to a ramp drive, F=kt, have been investigated for k varying from 0.1 to 10 amp-turn/ μ sec. Experimental $\dot{\phi}_p(k)$ and $t_p(k)$ curves are compared with computed curves based on the parabolic model $\dot{\phi}=\lambda(F-F_0'')^\nu\left[1-(2\phi+\phi_*-\phi_d)^2/(\phi_*+\phi_d)^2\right]$. The experimental $\dot{\phi}_p(k)$ curve fell entirely below the computed curve when step-F parameters were used in the computation. The computed $\dot{\phi}_p(k)$ curve could be made to agree with the experimental curve over the entire range of k by using a lower value of λ , λ_r . The computed and experimental $t_p(k)$ curves could be made to agree at any k value by using a lower value of F_0'' , F_0'' . However, exact agreement could be obtained at only one k value because these $t_p(k)$ curves cross each other. In spite of this problem, the above model can be used for practical applications if k does not vary over a wide range.

A study was made of the effect of temperature (in the range $-50\,^{\circ}\mathrm{C}$ to $+75\,^{\circ}\mathrm{C}$) on the switching properties of two square-loop ferrite toroids (a thin ring and a thick ring). Temperature coefficients have been found for the parameters of the model described above. The static $\phi(F)$ curves for a partially set state changed with temperature by approximately the same percentage as the major static $\phi(F)$ curves. As the temperature increased, the $\dot{\phi}_p(F)$ curves for a step-F drive shifted to lower F values but their slope and curvature were hardly affected. The $\dot{\phi}_p(k)$ curves for a ramp-F drive for different temperatures cross each other. The $t_p(k)$ curves were shifted downward by an increase in temperature, but were unaffected in slope and curvature. These effects are mostly due to temperature variations in F_0^n and λ_F .

CONTENTS

ABSTE	RACT	r		iii
LIST	OF	ILL	USTRATIONS	vii
LIST	OF	TABI	LES	ix
LIST	OF	SYMI	BOLS	xi
ACKNO	WLE	DGMI	ENTS	xix
PREFA	CE			
				xxi
			C AND INELASTIC FLUX-SWITCHING COMPONENTS	1
	A.		roduction	1
	B.	Flu	ux-Switching Models	4
		1.	Elastic $\dot{\phi}$ Spike	4
		2.	Inelastic Decaying $\dot{\phi}$	6
		3.	Inelastic Main $\dot{\phi}$	11
		4.	Discussion	12
		5.	Summary	15
	c.	Con	puter Programs for $\dot{\phi}$ Components	15
		1.	Computation of $\dot{\phi}_{\epsilon}$ and $\dot{\phi}_{\epsilon}'$	16
		2.	Computation of ϕ_i and ϕ'_i	17
		3.	Computation of $\dot{\phi}_{\mathbf{n}a}$ and $\dot{\phi}'_{\mathbf{n}a}$	17
		4.	Summary	18
]	D.	Exp	erimental Verification	18
		1.	Experiment	19
		2.	Computation	22
		3.	Results	
		4.	Discussion	26
		5.	Summary	26
I	Ε.	Con	clusions	41
				42
II (COMI	PUTA	TION OF FLUX SWITCHING IN MAGNETIC CIRCUITS	45
	A.		ded Core	45
		1.	Introduction	45
		2.	Inductive Load	47
		3.	Noninductive Load	47
		4.	Experimental and Computed $\dot{\phi}(t)$ and $i_L(t)$ of Inductively	
		5.	S	48
F	3.		o-Diod- T in D	49
•-	-	1.	Operation	49
		2.		49
		4.	Analysis of Mode I	56

CONTENTS

	3. Transcendental Solution of Currents									ţ
	4. Computation Using a Simple Method								. 61	
	5. Computation Using Runge-Kutta and Adams Methods .								. 66)
	6. Discussion								. 68	}
	7. Summary									
C.	Flux Division in a Loaded Saturable Core				•					
	1. Introduction									
	2. Experiment									
	3. Computational Analysis									
	4. Computer Program									
	5. Experimental Verification								_	
	6. Discussion									
	7. Summary									
D.	Conclusions	٠		•	٠	•	•	•	. 89	,
III VARI	MATIONS OF FLUX-SWITCHING PARAMETERS					•.			. 91	l
Α.	Ramp-F Switching								. 91	l
	1. Introduction								. 93	1
	2. Algebraic Calculation of $\dot{\phi}_p$ and t_p								. 92	2
	3. Numerical Computation of $\dot{\phi}_p$ and t_p									ć
	4. Experiment								. 99	9
	5. Parameter Corrections								. 105	2
	6. Summary							•	. 106	5
В.	Effects of Temperature								. 106	5
	1. Introduction								. 100	6
	2. Static $\phi(F)$						٠		. 10	7
	3. Step-F Switching				•	•	•	•		
	4. Ramp-F Switching		•		•					
	5. Summary		•			•	•			
C.	Conclusions	٠			٠	•	•	•	. 13	C
APPENDIX	<i>X A </i>								. 13	3
									1.0	,
APPENDIX	КВ	•	•		•	•	•	•	. 13	٠
APPENDIX	X C								. 13	7
APPENDIX	X D	•	•		•	•	•	•	. 13	•
APPENDIX	X E								. 14	
APPENDIX	<i>X F</i>	•			•	•	•		. 14	•
ADDENDIY	X G								. 15	
APPENDIA	<i>A.</i> G	·	•		·	·	•		. 10	•
APPENDIX	Х Н	•			•				. 15	•
ADDENDIN	X I								. 16	•
APPENUIX	A 1	•	•		•	•	•	•	. 10	
REFERENC	CES								. 17	•
TAIDEN									. 17	
LINDEX .								•		

ILLUSTRATIONS

Fig.	1	$\dot{\phi}(t)$ Oscillogram of Interrupted- F_n Switching in a Thin Toroidal Ferrite Core Using $F \geq F_0$
Fig.	2	$F(t)$ and $\dot{\phi}(t)$ Oscillograms of Interrupted- F_n Switching in a Thin Toroidal Ferrite Core Using $F < F_0 \ldots 3$
Fig.	3	Effects of F , ϕ , and Previous Switching on Elastic-Switching Coefficient ϵ
Fig.	4	Effect of T_r on $\dot{\phi}_i(t)$ Waveform for a Given F_D
Fig.	5	Approximate Variation of F_i with F
Fig.	6	$\overset{ullet}{\phi}(\phi)$ Oscillograms of Step-F Switching of a Thin Ferrite Ring
Fig.	7	Resemblance Between $\dot{\phi}(t)$ Waveforms Derived from Two Models for Inelastic $\dot{\phi}$
Fig.	8	Ringing in $\dot{\phi}(t)$ for $F(t)$ with a Short Rise Time
Fig.	9	Approximate Drive-Current Function
Fig.	10	Experimental (Solid Line) and Computed (Dashed Line) $F(t)$ and $\phi(t)$ Waveforms of Unloaded Core E-6 During Beginning of Switching, Using $F(t)$ with T_r of About 0.1 μ sec
Fig.	11	Experimental (Solid Line) and Computed (Dashed Line) $F(t)$ and $\phi(t)$ Waveforms of Unloaded Core E-6 During Beginning of Switching, Using $F(t)$ with T_r of About 0.02 μ sec
Fig.	12	Multiple Exposure of $\dot{\phi}(t)$ Waveforms of Core E-6 Corresponding to $F(t)$ Pulses of Different Amplitudes
Fig.	13	Computed $\dot{\phi}_{\epsilon}$, $\dot{\phi}_{i}$, $\dot{\phi}_{m,a}$ and $\dot{\phi}$ vs. t of Core E-6 During the Beginning of Switching
Fig.	14	Computed $\dot{\phi}_{ip}$ vs. F_D of Core E-6 with T_r as a Parameter
Fig.	15	Experimental and Computed $\dot{\phi}(t)$ and $i_L(t)$ Waveforms of Core J-1 which is Inductively Loaded and Switched by Step-F Drive 50
Fig.	16	Experimental and Computed $\dot{\phi}(t)$ and $i_L(t)$ Waveforms of Core J-1 which is Inductively Loaded and Switched by Ramp-F Drive
Fig.	17	A Single Stage of a Core-Diode-Transistor Binary Counter
Fig.	18	Incomplete Flux Switching in Four Modes of Operation of a Core-Diode-Transistor Binary Counter
Fig.	19	Equivalent Circuit for Mode I of a Single Stage in a Core-Diode-Transistor Binary Counter
Fig.	20	Experimental and Computed Current and Voltage Waveforms in Mode I of a Core-Diode-Transistor Binary Counter for V = 27 Volts
Fig.	21	Experimental and Computed Current and Voltage Waveforms in Mode I of a Core-Diode-Transistor Binary Counter for V = 8.6 Volts
Fig.	22	Superposition of $\dot{\phi}(t)$ Waveforms Computed by a Simple Method and $\dot{\phi}(t)$ Waveforms Computed by Runge-Kutta and Adams Methods

ILLUSTRATIONS

Fig.	23	Variations of ϕ_1 vs. F_1 , and ϕ_2 vs. F_2 During Mode I of a Core-Diode-Transistor Binary Counter	71
Fig.	24	Flux Division in a Loaded Saturable Three-Leg Core	73
Fig.	25	Experimental (Solid Line) and Computed (Dotted Line) $Ni(t)$ and $\hat{\phi}(t)$ Waveforms of Core S (l_4/l_3 = 1.83), Driven Unloaded by MMF NI of 2.0 amp-turns in a Flux-Division Experiment	83
Fig.	26	Measured and Computed Flux-Division Ratio $vs.$ MMF with Load as a Parameter for Core S $(l_4/l_3=1.83)$	84
Fig.	27	Computed Plots of Flux-Division Ratio vs. Leg-Length Ratio with Load as a Parameter and NI of 10 and 100 amp-turns for a Core Identical with Core S Except for the Length of Leg 4	85
Fig.	28	$\dot{\phi}_p(k)$ for Ramp $F(t)$	95
Fig.	29	•	96
Fig.	30		97
Fig.	31	* "	98
Fig.	32	•	00
Fig.	33	Experimental vs . Computed $\dot{\phi}(t)$ for Ramp F with λ_{p} and F_{0p}'' Adjusted to Make $\dot{\phi}_{p}$ and t_{p} Agree	01
Fig.	34		04
Fig.	35	•	09
Fig.	36	Static $\phi(F)$ Curves vs . Temperature of Core K-1	10
Fig.	37	Static $\phi(F)$ Parameters vs. Temperature for Core I-4	12
Fig.	38	Static $\phi(F)$ Parameters vs. Temperature for Core K-1	13
Fig.	39	Wing Sharpness of Static $\phi(F)$ Curves $vs.$ Temperature	14
Fig.	40	Static $\phi(+F)$ vs. Temperature of Partially-Set Core I-4	15
Fig.	41	Static $\phi(\neg F)$ vs. Temperature of Partially-Set Core I-4	15
Fig.	42	Static $\phi(+F)$ vs . Temperature of Partially-Set Core K-1	16
Fig.	43	Static $\phi(\neg F)$ vs. Temperature of Partially-Set Core K-1	16
Fig.	44	Major and Partially-Set Static $\phi(F)$ of Core I-4 at 75° and 0°C	17
Fig.	45	Major and Partially-Set Static $\phi(F)$ of Core K-1 at 75° and -50°C	18
Fig.	46	$\dot{\phi}_p(F)$ vs. Temperature of Core I-4	20
Fig.	47	$\dot{\phi}_p^r(F)$ vs. Temperature of Core K-1	21
Fig.	48	<u>,</u> •	22
Fig.	49		23
Fig.	50		24
Fig.	51	<u>.</u> -	.25
Fig.	52	r	.26
Fig.	. 53	·	27
Fig.	. 54	r	29
Fig.	. 55		29

TABLES

Table I	Leg Dimension and Switching Parameters of Core S	82
Table II	Dimensions, Switching Parameters, and Temperature Coefficients of Cores I-4 and K-1	108

LIST OF SYMBOLS

Symbol	Definition	Reference
A	Cross-sectional area of a leg	Rep. 1, Fig. 19
В	Flux density	
B_{r}	Maximum residual B	Rep. 2, Fig. 2
B_s	Saturation B	
\dot{B}	Time rate of change of B	
\dot{B}_{i}	Decaying inelastic \dot{B}	Eq. (13), p. 10
C	Capacitance	
С	$ anh^{-1}$ (ϕ_r/ϕ_s) in derivation of $\dot{\phi}_p(k)$ and $t_p(k)$ for ramp- F switching	Eq. (101), p. 93; Eq. (102), p. 94
C_{i}	Parameter in a model for decaying inelastic $\dot{\phi}$	Eq. (5), p. 7
E_{k}	Parameter in a model for a junction diode	Eq. (42), p. 46
F	MMF	
F_{B}	MMF at boundary between nonlinear and linear regions of $\phi_p(F)$	Rep. 3, Fig. 3
F_c	Coercive F	Rep. 3, Fig. 1
F_{D}	Amplitude of drive MMF	Rep. 3, Fig. 6
F_{DB}	Boundary value for F_D below which $T_{ip} = T_r$	Eq. (12), p. 9
F_d^n	Static F threshold	Rep. 3, Fig. 1
F_{ex}	Excess F above threshold	
F_{i}	MMF threshold for decaying inelastic $\dot{\phi}_i$	Eq. (17), p. 10
F_0	MMF threshold obtained by extrapolating linear $\dot{\phi}_{_{m{p}}}(F)$ to F axis	Rep. 3, Fig. 3; Eq. (19), p. 11

Symbol	Definition	Reference
F_0''	Dynamic F threshold	Rep. 3, Fig. 3; Eq. (19), p. 11
F''_{0r}	F_0'' of ramp- F switching	p. 96; Eq. (112), p. 102
F_{0i}	Asymptotic value for \boldsymbol{F}_i	Fig. 5, p. 11
F_{12}	Boundary between first and second regions of computed static $\phi(F)$ curve, i.e., $H_q l_i$	Rep. 2, pp. 6 and 28
F_{23}	Boundary between second and third regions of computed static $\phi(F)$ curve, i.e., $H_q l_o$	Rep. 2, pp. 6 and 28
F	Time rate of change of F	
Н	Magnetic field	
H_a	Parameter in the hyperbolic model for static $B(H)$	Rep. 2, Eq. (10) and Fig. 2
H_B	H at boundary between linear and non-linear regions of $B_p(H)$	Rep. 2, Fig. 15
H_c	Coercive H	Rep. 2, Eq. (14) and Fig. 2
H_{i}	$ extit{H}$ threshold for decaying inelastic $\dot{ extit{B}}$	Eq. (15), p. 10
H_n	Parameter in the hyperbolic model for static $B(H)$	Rep. 2, Eq. (11) and Fig. 2
H_{q}	Parameter in the hyperbolic model for static $B(H)$	Rep. 2, Eq. (11) and Fig. 2
H_0	H threshold, obtained by extrapolating linear $\dot{B}_p(H)$ to H axis	Rep. 2, Eq. (24) and Fig. 15
H_0''	Dynamic H threshold	Rep. 2, Eq. (83) and Fig. 15
\overline{H}	Average H	
h	Height of a leg (or core)	Rep. 1, Fig. 19
I	Drive-current amplitude in flux-division experiment	Fig. 24, p. 73
I_{c}	Asymptotic value of collector current in binary counter	Fig. 17, p. 52

Symbol	Definition	Reference
ID	Inside diameter of a toroid	
I_D	Amplitude of drive current	Rep. 3, Fig. 6
I_{s}	Initial value of i_s in a binary counter	Fig. 17, p. 52; Eq. (72), p. 62
I_0	Saturation current in a model for a junction diode	Eq. (42), p. 46
i	Instantaneous drive current in flux-division experiment	Eq. (93), p. 77
i_{c}	Collector current in a binary counter	Fig. 17, p. 52
i _D	Drive current	Rep. 3, Fig. 14
i_{d}	Loop current via diode in a binary counter	Fig. 19, p. 57
i _L	Current source in a binary counter	Fig. 19, p. 57
i _L	Load current	Rep. 3, Fig. 14
i _s	Drive current in a binary counter during STORE count	Fig. 17, p. 52; Fig. 19, p. 57
isr	Drive current in a binary counter during CARRY count	Fig. 17, p. 52
j	Index of iteration in a numerical solution of variables for each n th Δt , $e.g.$, $\phi_{n(j)}$, $\dot{\phi}_{n(j)}$, $q_{n(j)}$, $\dot{q}_{n(j)}$, $\dot{q}_{n(j)}$, $\dot{q}_{n(j)}$, etc.	
k	Slope of ramp $F(t)$	Eq. (106), p. 99; Fig. 32, p. 100
L	Inductance	
l	Average leg length	Rep. 3, Fig. 5
l_{i}	Length of the short edge of a leg	Rep. 3, Fig. 5
l_o	Length of the long edge of a leg	Rep. 3, Fig. 5
M_{i}	Material parameter in a model for decaying inelastic \dot{B}	Eq. (16), p. 10
N	Number of turns	
N_c	N of load winding	Rep. 3, Fig. 14

Symbol	Definition	Reference
N_D	N of drive winding	Rep. 3, Fig. 14
N_L	N of load winding in flux-division experiment	Fig. 24, p. 73
NV	Negligible Value of $\dot{\phi}_{\epsilon}$	p. 16
n	Index number for a time element Δt and the associated variables, e.g., ϕ_n , $\dot{\phi}_n$, etc.	e.g., p. 22
OD	Outside diameter of a toroid	
P	Ratio of computed $\dot{\phi}_p$ [using static $\phi(F)$ -limited parabolic model] and experimental $\dot{\phi}_p$ for ramp- F drive	Eq. (108), p. 102
q	Electric charge	Eq. (43), p. 46
\dot{q}	Load current, $i_L = dq/dt$	Eq. (43), p. 46
R	Resistance	
R_d	Forward resistance of a diode	Eq. (42), p. 46
R_L	Load resistance	Rep. 3, Fig. 14
r_{i}	Inside radius of a toroid	
r_o	Outside radius of a toroid	
S_p	Maximum slope of drive current	Fig. 9, p. 23
T	Duration of flux switching in flux-division experiment	Fig. 24, p. 73
T_{i}	Time when $\dot{\phi}_i$ begins to rise	Fig. 4, p. 9
T_{ip}	Time when $\dot{\phi}_i$ reaches peak	Fig. 4, p. 9
T_n	Abbreviation for $(13 - t \cdot 10^8)$ in i_L function in binary counter	Eq. (74), p. 64
$T_{m{r}}$	Rise time of a drive pulse	Fig. 9, p. 23
T_{rB}	Boundary value for T_r below which $T_{ip} = T_r$	Eq. (10), p. 8; Fig. 4, p. 9

SYMBOLS

Symbol	Definition	Reference
t	Time	
t	Time when drive current reaches maximum slope	Fig. 9, p. 23
t_{p}	Peak time of $\dot{\phi}$	Rep. 3, Fig. 1
u	Drive-current parameter	Fig. 9, p.23; Eq. (34), p. 24
V	Supply voltage in a binary counter	Fig. 17, p. 52
V_{d}	Forward voltage across a junction diode	Eq. [56(b)], p. 58
V_{min}	Minimum allowed V in binary counter	p. 55
<i>V</i> ₁	Abbreviation for $(\phi_s - \phi_r)/[(l_o - l_i)H_a]$	Rep. 3, Eq. (28)
V_2	Abbreviation for $[(\phi_s + \phi_r)H_q]/[(l_o - l_i)H_n]$	Rep. 3, Eq. (29)
v_{R_1-L}	Voltage across R_1 and L in binary counter	Eq. (49), p. 56
w	Width of a leg	e.g., Fig. 24, p. 73
у	General time variable	Eqs. (70) and (71), p. 61
ÿ	Time rate of change of y	Eqs. (70) and (71), p. 61
Δt	Small time increment used in computation of time variables	e.g., Eq. (29), p. 22
Δt	The time interval used to measure the slope of a ramp- F drive	Fig. 32, p. 100
$\Delta \! \phi$	Change of ϕ	•
$\Delta \! \phi_{m{d}}^{}$	$\Delta \phi$ associated with obtaining a point on static $\phi(F)$ curve, i.e., ϕ_d + ϕ_r	Eq. (41), p. 41
$\Delta \! \phi_i$	$\Delta\!\phi$ due to $\dot{\phi}_i$	Eq. (38), p. 39
$\Delta \phi_{i(\infty)}$	$\Delta \phi_i$ for $t \to \infty$	Eq. (39), p. 39
$\Delta\!\phi_{m{\epsilon}}$	Elastic $\Delta\!\phi$	Eq. (37), p. 39

Symbol	Definition	Reference
Δφ _(∞)	$\triangle \phi$ for $t \rightarrow \infty$	Eq. (40), p. 39
δ	Constant proportional to viscous damping in a model for $\dot{\phi}_{\epsilon}$	Eq. (35), p. 35
δί	Correction to i in iterative solution for i	p. 63
ϵ	Coefficient of elastic $\dot{\phi}$	Eqs. (2) and (3), p. 4; Fig. 3, p. 5
ζ	Coefficient of inelastic \dot{B}	Rep. 2, Eq. (24)
ζ_p	Peak ζ	p. 76; Rep. 2, Eq. (82)
η	Flux form factor in parabolic model for main $\dot{\phi}$	Eq. (20), p. 11
К	Coefficient of main inelastic \dot{B} in nonlinear $\dot{B}_p(H)$ region	p. 76; Rep. 2, p. 38
κ_{i}	Coefficient of decaying inelastic \dot{B}_i	Eq. (14), p. 10
λ .	Coefficient of main inelastic $\dot{\phi}$ in nonlinear $\dot{\phi}_p(F)$ region	Eq. (19), p. 11
λ_i	Coefficient of decaying inelastic $\dot{\phi}_i$	Eq. (5), p. 7
λ_r	λ for ramp- F switching	p. 96; Eq. (109), p. 102
ν	Power coefficient of main inelastic $\dot{\phi}$ in nonlinear $\dot{\phi}_p(F)$ region	Eq. (19), p. 11
ν _i	Power coefficient of decaying inelastic $\dot{\phi}_i$	Eq. (5), p. 7
ρ	Coefficient of inelastic $\dot{\phi}$	Rep. 1, Eq. (38)
ρ_{i}	Coefficient of decaying inelastic $\dot{\phi}_i$	Eq. (4), p. 6
ρ_{p}	Peak $ ho$	Eq. (19), p. 11
$\overline{ ho}$	Average $ ho$	Rep. 2, pp. 17-19
$ au_{_{\mathbf{S}}}$	Switching time	Eq. (90), p. 76
ϕ	Magnetic flux	

SYMBOLS

Symbol	Definition	Reference
$\phi_{_{m{d}}}$	ϕ value on a static $\phi(\emph{F})$ curve	Rep. 3, Fig. 1
$\phi_{_{r}}$	Maximum residual ϕ	Rep. 3, Fig. 1
$\phi_{_{s}}$	Saturation ϕ	
ϕ_d^{\prime}	$d\phi_d/dF$	Rep. 3, Eq. (31), (32), or (35)
$\dot{\phi}$	Time rate of change of ϕ	
$\boldsymbol{\dot{\phi}}_i$	Decaying inelastic $\dot{\phi}$ component	p. 6
$\dot{\phi}_{ip}$	Peak $\dot{\phi}_i$	Eq. (11), p. 8; Fig. 4, p. 9
$\overset{ullet}{\phi}_{_{oldsymbol{m}oldsymbol{a}}}$	Main inelastic $\dot{\phi}$ component	p. 11
$\dot{\phi}_{_{m{p}}}$	Peak $\dot{\phi}$	Eq. (19), p. 11
$\dot{\phi}_{\epsilon}$	Elastic component of $\dot{\phi}$	p. 4
$\dot{\phi}^{\prime}$	$\partial \dot{\phi}/\partial F$	p. 16
$\dot{\phi}_{i}^{\prime}$	$\partial \dot{\phi}_i / \partial F$	Eq. (27), p. 17
$\dot{\phi}'_{\pi a}$	$\partial \dot{\phi}_{ma}/\partial F$	p. 17
$\dot{\phi}_p^{\prime}$	$d {\dot \phi}_p / dF$	Rep. 3, Eq. (37) or (39)
$\dot{\phi}_\epsilon'$	$\partial \dot{\phi}_{\epsilon}/\partial F$	Eq. (25), p. 16
$\dot{\phi}*$	∂\$\dip_ma/∂\$	Eq. (28), p. 18

ACKNOWLEDGMENTS

The assistance of D. F. Fraser in computer programming is appreciated.

We wish to thank Alan J. DeVilbiss for his comments relative to the analysis of the core-diodetransistor binary counter.

PREFACE

This project report, Contract 950943 under NAS7-100, Stanford Research Institute Project 5094, is an extension of work under a previous project, Contract 950095 under NASw-6, SRI Project 3696.

From an engineering viewpoint, the modeling of the terminal properties of ferrimagnetic or ferromagnetic core materials is useful. are different ways to study these terminal properties. One extreme way is to study each property in as many core materials as possible before proceeding with the next property. Another extreme way is to study all the properties of one given core material before proceeding to the next core The present investigation lies between the extremes, although it is closer to the latter. In the past, we have studied the major characteristics of switching from a hard state ($\phi = -\phi$) and from a certain type of soft state ($|\phi| < \phi$) in a limited number of ferrite core materials. Among the materials studied, two magnesium-manganese ferrite materials have been investigated relatively thoroughly. describes the initial elastic and inelastic $\dot{\phi}$ spikes of one core material, the properties of ramp-F switching in three core materials, and the temperature effect on step-F switching, ramp-F switching and static $\phi(F)$ curves in two core materials. Additional properties of these materials need to be investigated, but other materials also need investigation.

In Report 3, the switching model was used in computational analyses* of magnetic circuits (unloaded core, loaded core, and core-diode shift register). The agreement with experimental data has encouraged us to extend this application to other magnetic circuits. Consequently, in this report, computational analyses and experimental verification are given for the initial $\dot{\phi}(t)$ spikes of an unloaded core, for a loaded core (using an improved algorithm), for a core-diode-transistor binary counter, and for flux division in a loaded saturable three-leg core.

By "computational analysis" we mean a numerical analysis which is programmed and run on a digital computer.

I ELASTIC AND INELASTIC FLUX-SWITCHING COMPONENTS

A. INTRODUCTION

In this section, improved switching models are proposed and verified experimentally for three components of $\dot{\phi}$: the elastic $\dot{\phi}$ spike, $\dot{\phi}_{\epsilon}$, occurring while F changes in time; the decaying inelastic $\dot{\phi}$ components, $\dot{\phi}_i$, which falls exponentially after reaching peak during the rise of F; and the main inelastic $\dot{\phi}$ component, $\dot{\phi}_{na}$, which is bell-shaped and, if F is not too low, accounts for most of the flux switching. The first and third components are well known, and were discussed in detail and applied in the previous three reports 1,2,3 * (hereinafter referred to as Reports 1, 2, and 3). The decaying $\dot{\phi}$ component, $\dot{\phi}_i$, was introduced in Report 3 (using the symbol $\dot{\phi}_{\rho i}$ instead of $\dot{\phi}_i$), where an attempt was made to model this component.

An additional experimental verification for the existence of $\dot{\phi}_i$ is given in Fig. 1 by showing $\dot{\phi}(t)$ waveforms of a thin toroidal ferrite core (Core E-6, Report 3, p. 23). These $\dot{\phi}(t)$ waveforms resulted from the

FIG. 1 $\dot{\phi}$ (t) OSCILLOGRAM OF INTERRUPTED-F SWITCHING IN A THIN TOROIDAL FERRITE CORE USING F > F $_0''$ Core E-6: OD/ID = 1.06; F $_0''$ = 0.95 amp-turn; F = 0.9 amp-turn; F = 1.17 amp-turn.

^{*} References are listed at the end of the report.

interruption of a step-F switching with low F (F=1.3 F_c , where F_c is the coercive mmf). The three fast-switching ϕ spikes (the second of which is negative) have been retouched because the original traces were too faint for photographic reproduction. The elastic ϕ spikes shown occur during the rise and fall of the first F pulse and during the rise of the second F pulse. The two F pulses have the same amplitude. During the first F pulse and in the beginning of the second F pulse, the total $\phi(t)$ is decaying despite the rise of the main $\phi(t)$ component. The difference between the total $\phi(t)$ and the main $\phi(t)$ component is the decaying component, ϕ_i . Our conclusion that ϕ_i is due to inelastic domain-wall motion (cf. Report 3, p. 12) is verified by the following three observations:

- (1) The relaxation time of $\dot{m{\phi}}_i$ is much longer than typical relaxation time of rotation of magnetization.⁴
- (2) Referring to the first F pulse, the area under $\dot{\phi}_i$ (following the rise time) is much larger than the area under the negative decaying $\dot{\phi}$ component (following the fall time). The latter is elastic in nature, and presumably results from the excess of the number of walls moving backward over the number of walls moving forward toward energy minima when F is suddenly interrupted. This excess in number of walls is due to the slower average velocity of the walls passing between energy-valley and energy-peak positions compared with walls moving between energy-peak and energy-valley positions.
- (3) The $\dot{\phi}_i$ waveform that follows the positive $\dot{\phi}$ spike of the second F pulse continues to decay smoothly from its value at the end of the first F pulse. This behavior is characteristic only of domain-wall motion.

Experimental F(t) and $\dot{\phi}(t)$ oscillograms of interrupted-F switching are shown in Fig. 2 for the same conditions as in Fig. 1, except that F=0.8 amp-turn. Since $F< F_0''$ ($F_0''=0.95$ amp-turn), the main $\dot{\phi}(t)$ component is not present, and $\dot{\phi}(t)=\dot{\phi}_{\epsilon}(t)+\dot{\phi}_{i}(t)$.

Flux-switching models have been proposed for $\dot{\phi}_{\epsilon}$, $\dot{\phi}_{i}$, and $\dot{\phi}_{\text{ma}}$ in Report 3 (the subscript ma is not added in Reports 1, 2, and 3). In the course of further investigation of $\dot{\phi}_{i}$, it was found that certain modifications should be incorporated into the models for both $\dot{\phi}_{i}$ and $\dot{\phi}_{\text{ma}}$ in order to obtain better agreement with experimental data. These modified models are given next. For completeness, we shall also summarize briefly the model for $\dot{\phi}_{\epsilon}$.

FIG. 2 F(t) AND $\dot{\phi}$ (t) OSCILLOGRAMS OF INTERRUPTED-F SWITCHING IN A THIN TOROIDAL FERRITE CORE USING F < F_0" Core E-6: OD/ID = 1.06; F_0" = 0.95 amp-turn; F_c= 0.9 amp-turn; F = 0.8 amp-turn.

B. FLUX-SWITCHING MODELS

Consider a thin core (or leg) which is driven by F(t). Based on the discussion above, the total $\dot{\phi}$ is expressed as

$$\dot{\phi} = \dot{\phi}_{\epsilon} + \dot{\phi}_{i} + \dot{\phi}_{ma} \qquad . \tag{1}$$

Semiempirical models for $\dot{\phi}_\epsilon$, $\dot{\phi}_i$, and $\dot{\phi}_{\it m\,a}$ are reviewed and modified as follows.

1. ELASTIC $\dot{\phi}$ SPIKE

Following Eq. (32) in Report 1 (p. 23),

$$\dot{\phi}_{\epsilon} = \epsilon \dot{F} \quad , \tag{2}$$

where ϵ is a function of F, ϕ , and the history of previous switching. For a core in saturation, $\epsilon(F)$ is given by Eq. (34), Report 1, and is plotted in Figs. 26 and 27 of Report 1 [for convenience, it is replotted in Fig. 3(a)]. For $\phi = -\phi_r$ and if |F| is not much larger than F_c , then for a toroidal core [cf]. Eq. (7), Report 3, p. 10],

$$\epsilon \stackrel{\sim}{=} \frac{\phi_s - \phi_r}{2\pi (r_o - r_i) H_a} ln \left(\frac{r_o}{r_i}\right) , \qquad (3)$$

where ϕ_s is saturation flux, ϕ_r is maximum residual flux, H_a is a material parameter, and r_o and r_i are outside and inside radii of the toroid.

The effects of ϕ and the previous switching (to reach ϕ) on ϵ are shown schematically in Fig. 3(b). For $|\phi| > \phi_r$, $\epsilon(\phi)$ may be derived from $\epsilon(F)$, shown in Fig. 3(a), and the static $\phi(F)$ curve (not shown). For $-\phi_r \leq \phi \leq \phi_r$, $\epsilon(\phi)$ peaks near ϕ = 0; for a given ϕ value, the faster the previous switching from $-\phi_r$ to ϕ is, the higher is ϵ . More investigation in the area of flux switching from a partially-set state is needed before we can propose a model for $\epsilon(\phi)$, switching history).

FIG. 3 EFFECTS OF F, ϕ , AND PREVIOUS SWITCHING ON ELASTIC-SWITCHING COEFFICIENT ϵ

2. Inelastic Decaying ϕ

a. INTRODUCTION

In Report 3, Eq. (8) (p.11), a semiempirical model was proposed for $\dot{\phi}_i$ resulting from a drive of constant amplitude, F_D , and rise time, T_r . According to this model,

$$\dot{\phi}_{i} = \rho_{i} (F_{D} - F_{d}^{n}) e^{-(t-T_{r})(F_{D} - F_{d}^{n})/C_{i}} , \qquad (4)$$

where ρ_i is switching resistance per turn squared, F_d^n is threshold, and G_i is a constant of proportionality of the decay time constant. Equation (4) was based [cf]. Report 3, pp. 11-12] on the hypothesis that $\dot{\phi}_i$ results from the motions of those domain walls that do not collide with each other, at least in the beginning of switching, each terminating when the wall is obstructed by an inhomogeneity (energy hill of a high slope). The decaying waveform of $\dot{\phi}_i$ stems from the random distributions of the distance to the obstructing hill and the average slope of nonobstructing hills. The higher is the excess of F over a threshold F_d^n , the faster the motions of these walls are. Hence, $\dot{\phi}_i$ is proportional and the decay time constant is inversely proportional to $(F - F_d^n)$.

b. LIMITATIONS OF THE PREVIOUS MODEL

The limitations of the model for $\dot{\phi}_i$ in Report 3 (pp. 11-12) are as follows:

- (1) The model does not account for the rise of $\dot{\phi}_i$ from zero to its peak value at $t=T_r$ (while F rises from F_i to, say, 95 percent of F_D). In evaluating the sum $\dot{\phi}_\epsilon+\dot{\phi}_i$ in Fig. 4 of Report 3, $\dot{\phi}_i$ is neglected during $t\leq T_r$, whereas $\dot{\phi}_\epsilon$ is neglected from $t=T_r$ until $F=F_D$.
- (2) The model is not valid if the rise time, T_r , is relatively long.
- (3) The model is applicable only if the drive mmf, F, is of constant amplitude, F_D .
- (4) Further investigation of a given ferrite material has shown that if F_D/F_d^n is not much larger than unity, then $\dot{\phi}_i$ is proportional not to $F_D-F_d^n$ but rather to $(F_D-F_i^n)^{\nu_i}$, where $F_i< F_d^n$ and $\nu_i>1$. This behavior is similar to that of the main $\dot{\phi}_i$, and may be attributed to the increase in the number of nucleation centers with the excess mmf. ⁶

c. MODIFIED MODEL

Let T_i be the time at which F reaches the value F_i . The above-mentioned drawbacks are overcome if the model of Eq. (4) is modified to the following expression (which is valid if $F \geq F_i$ and thus for $t \geq T_i$):

$$\dot{\phi}_{i} = \lambda_{i} (F - F_{i})^{\nu_{i}} e^{-(t - T_{i})(F - F_{i})/C_{i}} \qquad (5)$$

Here, λ_i is a constant of proportionality [replacing ρ_i in Eq. (4), in analogy with the expressions $\lambda(F-F_0'')^{\nu}$ and $\rho_p(F-F_0)$ for $\dot{\phi}_p$ in the model for the main $\dot{\phi}$, Report 3, Eq. (2)] and F has an arbitrary waveform with an arbitrary rise time, T_r . From t=0 to $t=T_i$, $\dot{\phi}_i=0$. During $T_i \leq t \leq T_r$, $\dot{\phi}_i(t)$ increases independently of $\dot{\phi}_\epsilon$ to a peak value, $\dot{\phi}_{ip}$, at $t=T_{ip}$. If the average slope of the rise of F(t) is low enough, then $T_{ip} < T_r$; otherwise, $T_{ip} = T_r$.

d. EXAMPLE

As an example, consider F(t) with a ramp rise followed by a constant amplitude, i.e.,

$$F = \begin{cases} F_D t / T_r & \text{if } 0 \le t \le T_r \\ F_D & \text{if } T_r \le t \end{cases}$$
(6)

Switching starts at

$$T_i = T_r \frac{F_i}{F_D} . (7)$$

During $T_i \le t \le T_r$, Eqs. (5), (6), and (7) give

$$\dot{\phi}_{i} = \lambda_{i} \left[(t - T_{i}) F_{D} / T_{r} \right]^{\nu_{i}} e^{-(t - T_{i})^{2} F_{D} / (C_{i} T_{r})} ; \qquad (8a)$$

during $T_r \leq t$, Eqs. (5) and (6) give

$$\dot{\phi}_{i} = \lambda_{i} (F_{D} - F_{i})^{\nu_{i}} e^{-(t-T_{i})(F_{D} - F_{i})/C_{i}} \qquad (8b)$$

Whereas $\dot{\phi}_i(t)$ of Eq. [8(b)] falls exponentially with time, $\dot{\phi}_i(t)$ of Eq. [8(a)] rises with time to a peak value $\dot{\phi}_{ip}$ at $t=T_{ip}$. Differentiating Eq. [8(a)] with respect to time and equating $d\dot{\phi}_i/dt$ to zero, we get

$$T_{ip} = F_i (T_r/F_D) + \sqrt{(C_i \nu_i/2) \cdot (T_r/F_D)}$$
, (9)

which is valid provided that $T_{ip} \leq T_r$. For a given value of F_D , $T_{ip} \leq T_r$ if T_r exceeds a certain value, T_{rB} . By equating T_{ip} , Eq. (9), to T_r , we find that

$$T_{rB} = \frac{C_i \nu_i}{2F_D [1 - (F_i/F_D)]^2} . \tag{10}$$

On the other hand, if $T_r > T_{rB}$, then the expression given by Eq. (9) is larger than T_r . Since for $t > T_r$, $\dot{\phi}_i(t)$ in Eq. [(8(b)] decays exponentially, $\dot{\phi}_i(t)$ reaches a discontinuous peak at $t = T_r$, and so $T_{ip} = T_r$.

We may thus conclude that, for a given F_D value, if $T_r \geq T_{rB}$, Eq. (10), then $T_{ip} \leq T_r$ and Eq. (9) is valid; but if $T_r \leq T_{rB}$, then $T_{ip} = T_r$. The two cases, designated by Subscripts (1) and (2), are shown in Fig. 4. In both cases $\dot{\phi}(t)$ is discontinuous at $t = T_r$, but in Case (2) the discontinuity and the peak of $\dot{\phi}_i(t)$ coincide. In each case, the peak value of $\dot{\phi}_i$, $\dot{\phi}_{ip}$, may be determined by substituting $t = T_{ip}$ into Eq. [8(a)]. Thus,

$$\dot{\phi}_{ip} = \begin{cases} \lambda_{i} \left(\frac{C_{i} \nu_{i} F_{D}}{2 e T_{r}} \right)^{\nu_{i}/2} & \text{if } T_{r} \geq T_{rB} \\ \lambda_{i} \left(F_{D} - F_{i} \right)^{\nu_{i}} e^{-T_{r} \left(F_{D} - F_{i} \right)^{2} / \left(F_{D} C_{i} \right)} & \text{if } T_{r} \leq T_{rB} \end{cases} \quad [\text{Case (1)}]$$

$$(11)$$

We conclude from Eqs. (7) through (11) that, for a given value of F_D , the larger T_r is, the larger are T_i and T_{ip} and the smaller is $\dot{\phi}_{ip}$. In the limit of Case (1), as $T_r \to \infty$, $\dot{\phi}_i \to 0$. In the limit of Case (2), as $T_r \to 0$, $\dot{\phi}_{ip} \to \lambda_i (F_D - F_i)^{\nu i}$; hence, $\dot{\phi}_i$ rises instantaneously to $\dot{\phi}_{ip}$ at t=0 and decays exponentially thereafter in accordance with Eq. [8(b)] in which $T_i=0$.

FIG. 4 EFFECT OF T, ON $\phi_i(t)$ WAVEFORM FOR A GIVEN FD

A similar analysis may be carried out for a given value of T_{r} and a variable F_{D} . From Eq. (9) we find the value

$$F_{DB} = F_i + \frac{C_i \nu_i}{4T_r} + \sqrt{\frac{C_i \nu_i}{4T_r} \left(2F_i + \frac{C_i \nu_i}{4T_r}\right)}$$
(12)

such that if $F_D \geq F_{DB}$, then $T_{ip} \leq T_r$, but if $F_D \leq F_{DB}$, then $T_{ip} = T_r$.

e. EFFECTS OF GEOMETRY ON SWITCHING PARAMETERS

In analogy with the material inelastic-switching properties of the main $\dot{\phi}$ of a thin core (or leg) of cross-sectional area A and average length, l (cf. Report 2, pp. 8, 37-40), Eq. (5) may be converted

from $\dot{\phi}_i(F,t)$ into $\dot{B}_i(H,t)$, where $\dot{B}_i=\dot{\phi}_i/A$ and H=F/l. Thus, in analogy with the relation $B_p=\kappa(H-H_0'')^\nu$ of Eq. (83) in Report 2,

$$B_{i} = \kappa_{i} (H - H_{i})^{\nu_{i}} e^{-(t-T_{i})(H-H_{i})/M_{i}} , \qquad (13)$$

where κ_i , H_i , and M_i are material parameters (H reaches the threshold value H_i at $t=T_i$). Following the geometrical relations expressed by Eqs. (91) and (92) of Report 2 (p. 40),

$$\lambda_i = \kappa_i A / l^{\nu_i} \tag{14}$$

and

$$F_i = H_i l . (15)$$

Assuming that the decay time constant is determined solely by the materialswitching behavior,

$$C_{i} = M_{i} l (16)$$

Equations (14) through (16) are useful in calculation of $\dot{\phi}_i$ of legs (or cores) of the same material, but of different geometry, e.g., in calculation of flux division in a saturable three-leg core, as we shall see later.

f. VARIATION OF F_i

We have presumed that $\dot{\phi}_i$ is generated by the motion of noncolliding walls which are finally obstructed by randomly distributed centers of imperfections (energy hills of high slopes). In line with our hypothesis that the average slope of the nonobstructing hills is randomly distributed, the slope of the first hill is also randomly distributed. As a result, we may expect the threshold F_i to increase from near zero to some finite asympotic value, F_{0i} . Physically, this means that a small percentage of the walls are initially at a barely stable state (i.e., a very small applied F will displace them inelastically) and that most of the walls will break free if $F \geq F_{0i}$.

A plot of F_i vs. F is shown in Fig. 5. As an approximation, F_i vs. F may be described by a tanh function, i.e.,

$$F_{i} = F_{0i} \tanh (F/F_{0i}) \qquad (17)$$

FIG. 5 APPROXIMATE VARIATION OF F, WITH F

Note that the slope of $F_i(F)$ at F=0 is unity, as expected from the discussion above. Thus, for F values of F_{0i} , $2F_{0i}$, and $3F_{0i}$, F_i reaches 76.16 percent, 96.4 percent and 99.5 percent of F_{0i} , respectively. With F_i defined as in Eq. (17), $T_i=0$ because $F=F_i$ at t=0.

The relation between the value of F_{0i} and the values of other threshold parameters will be discussed later (p. 36).

3. Inelastic Main $\dot{\phi}$

a. INTRODUCTION

A model for the main $\dot{\phi}$ was proposed and applied in Report 3. Following Eqs. (1), (2) and (4) of Report 3,

$$\dot{\phi}_{ma} = \dot{\phi}_{p} \gamma \qquad , \tag{18}$$

where

$$\dot{\phi}_{p} = \begin{cases} 0 & \text{if } F \leq F_{0}'' \\ \lambda (F - F_{0}'')^{\nu} & \text{if } F_{0}' \leq F \leq F_{B} \\ \rho_{p} (F - F_{0}) & \text{if } F_{B} \leq F \end{cases}$$
(19)

and

$$\eta = 1 - \left(\frac{2\phi + \phi_s - \phi_d}{\phi_s + \phi_d}\right)^2 \tag{20}$$

and where ϕ_d is the ϕ value on the static $\phi(F)$ curve. Based on experimental verification in Report 3, we concluded [cf]. Report 3, p. 33] that the above model is satisfactory, except if F is low, i.e., around the coercive mmf or lower.

b. MODIFIED $\eta(\phi)$

Typical $\dot{\phi}(\phi)$ oscillogram of step-F switching in a thin ferrite core (Core E-6, Report 3, p. 23) are shown in Fig. 6 for three amplitude values: F_D = 1.2, 1.4, and 1.8 amp-turns. In the beginning of switching, as ϕ rises by a small $\Delta \phi$ above $-\phi_r$, $\dot{\phi}(\phi)$ is due primarily to $\dot{\phi}_e$ and $\dot{\phi}_e$. Beyond this region of ϕ , $\dot{\phi}(\phi)$ is due primarily to $\dot{\phi}_i$ and $\dot{\phi}_{ma}$. As ϕ increases, the contribution of $\dot{\phi}_i$ to the total $\dot{\phi}$ diminishes to a negligible amount, and $\dot{\phi}(\phi)$ is essentially $\dot{\phi}_{ma}(\phi)$. An extrapolation of $\dot{\phi}_{ma}(\phi)$ to the ϕ axis is dash-lined in each case of Fig. 6. Each $\dot{\phi}_{ma}(\phi)$ extrapolation intersects the ϕ axis at $\phi \cong -\phi_r$ rather than $\phi \cong -\phi_s$. As a result of this observation, we shall modify $\eta(\phi)$ of Eq. (20) by replacing ϕ_s by ϕ_r , i.e.,

$$\eta = 1 - \left(\frac{2\phi + \phi_r - \phi_d}{\phi_r + \phi_d}\right)^2 \qquad (21)$$

Note that ϕ is the total flux, *i.e.*, obtained by integration of the three components of $\dot{\phi}$, Eq. (1).

4. Discussion

The experimental data given in Fig. 6 were known before the previous $\gamma(\phi)$ function, Eq. (20), was proposed. One may then ask why we chose $\gamma(\phi)$ given by Eq. (20) instead of $\gamma(\phi)$ given by Eq. (21). The answer lies in the solution to the differential equation of $\dot{\phi}_{ma}$ in the absence of the decaying component, $\dot{\phi}_i$. In order to simplify the explanation of this point, let us assume an ideal step-F switching (F rises to F_D in a zero rise time), for which $\dot{\phi}_p$, Eq. (19), is constant. We shall first neglect the elastic $\dot{\phi}$ component, $\dot{\phi}_e$. If ϕ is identified with the main component, ϕ_{ma} (i.e., the flux due to time integration of $\dot{\phi}_{ma}$ only), then the resulting solution of the differential equation expressed by Eq. (18) in which $\gamma(\phi)$ is given by Eq. (21) is absurd: The initial value of $\dot{\phi}$ is zero and the switching time required to change ϕ from $-\phi_r$ to zero is infinite [cf. Report 1, Eq. (40) and Fig. 30, pp. 27-28]. In order to overcome this difficulty,

FIG. 6 $\dot{\phi}(\phi)$ OSCILLOGRAMS OF STEP-F SWITCHING OF A THIN FERRITE RING Drive: 0.05 μ sec rise time; variable amplitude F_D .

Core: E-6; OD/ID = 1.06; $F_c = 0.9$ amp-turn.

Added dashed lines are extrapolated $\dot{\phi}_{,m,a}$ vs. ϕ . ϕ Scale = 1.04 maxwell/major div.; ϕ scale: (a) 3.3 mv/turn, (b) 6.9 mv/turn, (c) 13.8 mv/turn.

we approximated $\eta(\phi)$ by the expression given in Eq. (20). However, this difficulty in obtaining the proper rate of increase of ϕ from $-\phi_r$ does not exist with our present model because of the presence of the additional, decaying, $\dot{\phi}$ component, whose initial value is finite, i.e., $\lambda_i(F_D-F_i)^{\nu_i}$. Under this condition, we are allowed to use the more exact $\eta(\phi)$ function given by Eq. (21).

In the discussion above we have neglected the elastic component, $\dot{\phi}_{\epsilon}$. If we include $\dot{\phi}_{\epsilon}$, then, in the absence of $\dot{\phi}_{i}$, $\dot{\phi}=\dot{\phi}_{ma}+\dot{\phi}_{\epsilon}$, and as F rises from zero to F_{D} , ϕ increases by the amount ϵF_{D} . Although the use of $\eta(\phi)$ of Eq. (21) will not lead to an infinite switching time, the initial value of $\dot{\phi}_{ma}$ at $\phi=-\phi_{r}+\epsilon F_{D}$ is extremely low, and the resulting computed $\dot{\phi}$ waveform will have little resemblance to the observed $\dot{\phi}$ waveform. Therefore, even if $\dot{\phi}_{\epsilon}$ is included but $\dot{\phi}_{i}$ is not included in the total $\dot{\phi}$, we have to use the $\eta(\phi)$ function given in Eq. (20) and not the one given in Eq. (21).

If F_D is larger than the F value at the upper knee of the static $\phi(F)$ curve, then the sum $\dot{\phi}_i + \dot{\phi}_{ma}$, in which $\dot{\phi}_{ma}$ is calculated by using $\eta(\phi)$ of Eq. (21), is approximated quite well by $\dot{\phi}_{ma}$ calculated by using $\eta(\phi)$ of Eq. (20), as is illustrated in Fig. 7. The resemblance between the two $\dot{\phi}(t)$ waveforms in Figs. 7(a) and 7(b) justifies the practice of using the approximation

$$\dot{\phi}_{p} \{ 1 - [(2\phi + \phi_{s} - \phi_{d})/(\phi_{s} + \phi_{d})]^{2} \} \stackrel{\sim}{=} \dot{\phi}_{i} + \dot{\phi}_{p} \{ 1 - [(2\phi + \phi_{r} - \phi_{d})/(\phi_{r} + \phi_{d})]^{2} \}$$
(22)

FIG. 7 RESEMBLANCE BETWEEN $\dot{\phi}$ (t) WAVEFORMS DERIVED FROM TWO MODELS FOR INELASTIC $\dot{\phi}$

if the drive mmf is large enough to switch ϕ to the saturation region above the knee. However, if F is low $(e.g., F \cong F_c)$, then such an approximation may become quite poor. Furthermore, if $F_i < F < F_0''$, then $\dot{\phi}_i > 0$, whereas $\dot{\phi}_{ma} = 0$ regardless of which $\eta(\phi)$ function is used because, following Eq. (19), $\dot{\phi}_p = 0$.

In general, if the instantaneous $\dot{\phi}$ is of interest, the elastic component of $\dot{\phi}$, $\dot{\phi}_{\epsilon}$, should be included. However, if inelastic $\Delta \phi$ is to be calculated, then it is justified to neglect $\dot{\phi}_{\epsilon}$.

5. SUMMARY

Three components are distinguished in the total $\dot{\phi}(t)$ waveform of a ferrite core: elastic $\dot{\phi}$ spike, $\dot{\phi}_{\epsilon}$; inelastic decaying $\dot{\phi}$, $\dot{\phi}_{i}$; and the bell-shaped main inelastic $\dot{\phi}$, $\dot{\phi}_{ma}$. The following semiempirical switching models are proposed for the three components of $\dot{\phi}$: For the elastic $\dot{\phi}$, $\dot{\phi}_{\epsilon} = \epsilon F$, where ϵ is a function of F, ϕ , and the previous switching; for $\phi = -\phi_{r}$ and F not much larger than F_{c} ,

$$\epsilon = \{(\phi_s - \phi_r)/[2\pi(r_o - r_i)H_a]\} \ln(r_o/r_i)$$

For the decaying inelastic $\dot{\phi}$, $\dot{\phi}_i = \lambda_i (F - F_i)^{\nu_i} e^{-(t-T_i)(F-F_i)/C_i}$, where λ_i is a proportionality factor, F_i is the threshold, ν_i is a power coefficient, T_i is the time of beginning of $\dot{\phi}_i$ switching (when F reaches F_i), and C_i is a constant proportional to the decay time constant. For the main inelastic $\dot{\phi}$, $\dot{\phi}_{\mathbf{m}\,a} = \dot{\phi}_p \{1 - [(2\phi + \phi_r - \phi_d)/(\phi_r + \phi_d)]^2\}$, where, for given F, $\dot{\phi}_p$ is the peak value of $\dot{\phi}$, ϕ_d is the ϕ value on the static $\phi(F)$ curve and ϕ_r is the maximum residual flux. If F is low (around F_c or lower), $\dot{\phi}_i$ should be distinguished from $\dot{\phi}_{\mathbf{m}\,a}$, but if F is large, then $\dot{\phi}_i + \dot{\phi}_{\mathbf{m}\,a}$ may be approximated quite well by

$$\dot{\phi} = \dot{\phi}_p \{1 - [(2\phi + \phi_s - \phi_d)/(\phi_s + \phi_d)]^2\}$$

in which ϕ_s is saturation flux.

C. COMPUTER PROGRAMS FOR $\dot{\phi}$ COMPONENTS

In Report 3, a computer program for only the main component of $\dot{\phi}$ was provided. It was felt then (cf. Report 3, p. 34) that more needed to be known about $\dot{\phi}_{\epsilon}$ and $\dot{\phi}_{i}$ before these components were incorporated into the

over-all computer program. After studying $\dot{\phi}_i$ in more detail, its incorporation has been undertaken. (It should be emphasized that our present information is based on the study of one core only; more core materials will be investigated in the future.)

If a core is switched unloaded, then F(t) and F(t) are given. However, if a loaded core is switched, then the time variables, including F and F, are solved for transcendentally. If Newton's method (cf. Report 3, p. 42) is used in this solution, then the value of $\dot{\phi}' = d\dot{\phi}/dF$ needs to be known. Following Eq. (1),

$$\dot{\phi}' = \dot{\phi}'_{\epsilon} + \dot{\phi}'_{i} + \dot{\phi}'_{ma} \qquad , \tag{23}$$

where $\dot{\phi}'_{\epsilon} = d\dot{\phi}_{\epsilon}/dF$, $\dot{\phi}'_{i} = d\dot{\phi}_{i}/dF$, and $\dot{\phi}'_{m\,a} = d\dot{\phi}_{m\,a}/dF$. Each of these $\dot{\phi}'$ components will be computed in the corresponding $\dot{\phi}$ PROCEDURE where the $\dot{\phi}$ component itself is being computed.

1. Computation of $\dot{\phi}_{\epsilon}$ and $\dot{\phi}_{\epsilon}'$

Computation of $\dot{\phi}_{\epsilon}$ is based on Eq. (2), i.e., $\dot{\phi}_{\epsilon} = \epsilon F$. A computer program for computing $\dot{\phi}_{\epsilon}$ and $\dot{\phi}'_{\epsilon}$ is given in Appendix A in a form of PROCEDURE $\dot{\phi}_{\epsilon}(\dot{F}, \Delta t, NV, \dot{\phi}'_{\epsilon})$. The elastic switching parameter, ϵ , is global, i.e., declared throughout the program; it may be evaluated by using Eq. (3). The input parameters are \dot{F} , Δt , and NV, the latter standing for a negligible value of $\dot{\phi}_{\epsilon}$; $\dot{\phi}'_{\epsilon}$ on the other hand, is an output parameter.

In the case of a loaded core, \dot{F} at $t=t_n=n\Delta t$ is approximated by differences rather than differentials, i.e.,

$$\dot{F} \cong \frac{F_n - F_{n-1}}{\wedge t} .$$
(24)

Since only F_n is solved for (the values of F_{n-1} and Δt are given), $\dot{\phi}'_{\epsilon} = d(\epsilon F)/dF_n$. Hence,

$$\dot{\phi}_{\epsilon}' = \epsilon/\Delta t \quad . \tag{25}$$

For practical consideration, if $\dot{\phi}_\epsilon < NV$, we shall assume that $\dot{\phi}_\epsilon = 0$ and, therefore, also $\dot{\phi}'_\epsilon = 0$.

2. Computation of $\dot{\phi}_i$ and $\dot{\phi}_i'$

Based on Eq. (5), $\dot{\phi}_i$ is computed as a function of F, t, and T_i . A computer program for computing $\dot{\phi}_i$ and $\dot{\phi}'_i = d\dot{\phi}_i/dF$ is given in Appendix B in the form of PROCEDURE $\dot{\phi}_i(F,\ t,\ T_i,\ \dot{\phi}'_i)$. The core parameters λ_i , F_i , ν_i and C_i are assumed to be global parameters. The excess mmf, $F - F_i$, is computed each time $\dot{\phi}_i(F,\ t,\ T_i,\ \dot{\phi}'_i)$ PROCEDURE is called, and as soon as $F - F_i > 0$, T_i is identified with the corresponding t value. Using Eq. (5),

$$\dot{\phi}_{i} = \begin{cases} 0 & \text{if } t \leq T_{i} \\ \lambda_{i} (F - F_{i})^{\nu_{i}} e^{-(t - T_{i})(F - F_{i})/C_{i}} & \text{if } t \geq T_{i} \end{cases}$$

$$(26)$$

Differentiation of Eq. (26) with respect to F gives

$$\dot{\phi}_{i}' = \begin{cases} 0 & \text{if } t < T_{i} \\ \dot{\phi}_{i} \left(\frac{1}{F - F_{i}} - \frac{t - T_{i}}{C_{i}} \right) & \text{if } t \geq T_{i} \end{cases}$$
 (27)

For practical consideration, if $\dot{\phi}_i$ is negligible, e.g., $\dot{\phi}_i < 0.001 \ \lambda_i (F - F_i)$, then we assume that $\dot{\phi}_i = 0$ and $\dot{\phi}_i' = 0$

3. Computation of $\dot{\phi}_{_{\mathbf{R}\,\alpha}}$ and $\dot{\phi}'_{_{\mathbf{R}\,\alpha}}$

Computation of the main component of $\dot{\phi}$, $\dot{\phi}_{\text{m}\,a}$ is based on Eqs. (18), (19), and (21). The computer program for computing $\dot{\phi}_{\text{m}\,a}$ and $\dot{\phi}'_{\text{m}\,a} = d\dot{\phi}_{\text{m}\,a}/dF$ is given in Appendix C in the form of PROCEDURE $\dot{\phi}_{\text{m}\,a}(F,\,\phi,\,\phi_{d},\,\dot{\phi}'_{\text{m}\,a})$, in which F and ϕ are input parameters and ϕ_{d} and $\dot{\phi}'_{\text{m}\,a}$ are output parameters. This PROCEDURE is identical with $\dot{\phi}(F,\,\phi,\,\phi_{d},\,\dot{\phi}')$ PROCEDURE given in Report 3 (Appendix A, pp. 133-135) except for two modifications: First, $\eta(\phi)$ follows Eq. (21) instead of Eq. (20) and second, F_{12} , F_{23} , V_{1} , and V_{2} [cf. Report 3, Eqs. (26) through (29), pp. 18-19] are treated as global core parameters instead of being computed once inside the $\dot{\phi}$ PROCEDURE. Following the first modification, ϕ_{r} replaces ϕ_{s} in evaluation of $\dot{\phi}'_{\text{m}\,a}$ [cf. Report 3, Eq. (41), p. 20]. For practical consideration, if $\phi_{d} - \phi \leq 0.001\phi_{r}$, then we assume that $\dot{\phi}_{\text{m}\,a} = 0$ and therefore, also $\dot{\phi}'_{\text{m}\,a} = 0$.

We have shown [cf]. Eq. (22)] that if F is not low, $(\dot{\phi}_i + \dot{\phi}_{ma})$ may be replaced by $\dot{\phi}_{ma}$ alone if we replace $\eta(\phi)$ of Eq. (21) by $\eta(\phi)$ of Eq. (20). Under this condition, PHIS should replace PHIR in Lines PHDTMA42 through PHDTMA45 of the $\dot{\phi}_{ma}(F, \phi, \phi_d, \dot{\phi}'_{ma})$ PROCEDURE, Appendix C. In Appendix D, two computer PROCEDUREs of different output parameters are given for this case: $\dot{\phi}(F, \phi, \phi_d, \dot{\phi}')$ and $\dot{\phi}(F, \phi, \dot{\phi}', \dot{\phi}^*)$. The first PROCEDURE is the same as the one used in Appendix A of Report 3 (p. 133), and its output furnishes the values of $\dot{\phi}$, ϕ_d , and $\dot{\phi}'$. The output of the second PROCEDURE includes $\dot{\phi}$, $\dot{\phi}'$ and $\dot{\phi}^*$, where, as shown on p. 43 of Report 3,

$$\dot{\phi}^* = \frac{\partial \dot{\phi}}{\partial \phi} = -4\dot{\phi}_p \frac{2\phi + \phi_s - \phi_d}{(\phi_s + \phi_d)^2} \qquad (28)$$

Another difference, which is minor, is that the core parameters $F_{1\,2}$, $F_{2\,3}$, V_1 and V_2 are arbitrarily treated as global parameters in the $\dot{\phi}(F,\ \phi,\ \dot{\phi}',\ \dot{\phi}^*)$ PROCEDURE, but not in the $\dot{\phi}(F,\ \phi,\ \phi_d,\ \dot{\phi}')$ PROCEDURE.

4. SUMMARY

Computer programs for the three components of $\dot{\phi}$ and $\dot{\phi}' = d\dot{\phi}'/dF$ are given in PROCEDURE forms in Appendices A. B., and C. PROCEDURE $\dot{\phi}_{\epsilon}(\dot{F}, \Delta t, NV, \dot{\phi}'_{\epsilon})$ is based on Eqs. (2) and (25); PROCEDURE $\dot{\phi}_{i}(F, t, T_{i}, \dot{\phi}'_{i})$ is based on Eqs. (26) and (27); and PROCEDURE $\dot{\phi}_{ma}(F, \phi, \phi_{d}, \dot{\phi}'_{ma})$ is based on Eqs. (18), (19), and (21). Two computer PROCEDUREs that differ in their output parameters, $\dot{\phi}(F, \phi, \phi_{d}, \dot{\phi}')$ and $\dot{\phi}(F, \phi, \dot{\phi}', \dot{\phi}^*)$, are given in Appendix D for the case in which the sum $\dot{\phi}_{i} + \dot{\phi}_{ma}$ is approximated by $\dot{\phi} = \dot{\phi}_{r}\{1 - [(2\phi + \phi_{s} - \phi_{d})/(\phi_{\tau} + \phi_{d})]^{2}\}$, Eqs. (18) through (20).

D. EXPERIMENTAL VERIFICATION

The experimental study of the $\dot{\phi}$ components consisted of clearing and setting a thin ferrite core (Core E-6, Report 3, p. 23), and photographing the waveforms of $\dot{\phi}(t)$ and F(t) during the beginning of the SET pulse. Variations in the SET pulse included two rise-time values, each with seven or eight different amplitude values. A computer program was written and, with the proper core and circuit parameters, used to compute the $\dot{\phi}(t)$ waveforms. Experimental and computed results were then compared and analyzed.

1. EXPERIMENT

a. INTRODUCTION

In order to investigate the decaying component, $\dot{\phi}_i$, meaningfully, the main component, $\dot{\phi}_{\mathbf{z}a}$, should be as small as possible, certainly not much larger than $\dot{\phi}_i$. This condition can be achieved if the rise time of F(t) is short. On the other hand, a short rise time generates a high-frequency ringing in the core windings (due to stray capacitance), causing a distortion in $\dot{\phi}(t)$. Another difficulty in this type of investigation stems from the variations of $\dot{\phi}_{\epsilon}$ if the rising portion of F(t) is not smooth.

b. RISE TIME

Two values of rise time were used: one was around 0.1 μ sec, and the other around 0.02 μ sec. No difficulties were encountered using the longer rise time. However, some ringing was present in the case of $T_r \cong 0.02~\mu$ sec. A typical example is shown in Fig. 8, where the waveform of the observed $\dot{\phi}(t)$ has been traced. It can be seen that subtraction of a decaying $\dot{\phi}(t)$ ringing of a high frequency (about 100 megacycles) from the observed $\dot{\phi}(t)$ oscillogram results in a smoother $\dot{\phi}(t)$ waveform. The latter should be considered to be the actual $\dot{\phi}(t)$ waveform.

FIG. 8 RINGING IN $\dot{\phi}$ (t) FOR F(t) WITH A SHORT RISE TIME F_D = 1.50 amp-turn; T_r = 19 nanoseconds.

A mercury-relay pulser, with its capability of providing current pulses up to 40-ampere amplitude with less than 0.7-nanosecond rise time, is very attractive for studying high-F $\dot{\phi}_{\epsilon}$ and $\dot{\phi}_{i}$. Unfortunately, an attempt to use the mercury relay has been unsuccessful so far because of an excessive ringing in the $\dot{\phi}(t)$ waveforms. This problem should be pursued further in the future.

c. TESTED CORE

Oscillograms of $\dot{\phi}(t)$ were recorded only for one core, the thin ferrite toroid (OD/ID=1.06) which is referred to as Core E-6 in Report 3. The dimensions and switching parameters of this core may be found in Report 3, p. 23. The nominal composition of the core material (commercially known as Telemeter Magnetics T-5) is

$$[Mg_{0.32}Zn_{0.10}Mn_{0.58}]^{++}[Mn_{0.26}Fe_{0.74}]_{2}^{+++0}$$

The $\dot{\phi}(t)$ waveforms of additional cores of different material and larger OD/ID ratio were observed and appeared to behave in a manner similar to that of the $\dot{\phi}(t)$ of Core E-6.

d. CORE HOLDER

The same coaxial core holder was used as described on p. 85 of Report 3. The sense winding was increased to 20 turns of No. 48 copper wire. The negative clear winding consisted of 10 turns distributed around the circumference of the core. The drive winding was modified so as to have a single turn made of six No. 48 copper wires. The pulses with 0.1- μ sec rise time were applied to this single-turn 6-conductor winding. In this case the center conductor of the 50-ohm transmission line was not used. The pulses with 0.02- μ sec rise time were applied via the center conductor of the 50-ohm line.

e. PULSE SEQUENCE

The pulse sequence was that discussed in Report 3, p. 83: first, a positive CLEAR pulse; second, a negative CLEAR pulse; and third, the (positive) SET pulse during which measurements were made.

f. EQUIPMENT

Four different current pulsers were used in this experiment:

- (1) The SET pulses with 0.1- μ sec rise time* were generated by paralleling several high-impedance transistor current drivers (Digital Equipment Corp., Model 62). Maximum amplitude was 5.0 amperes.
- (2) The SET pulses with $0.02-\mu \rm sec$ rise time* were generated by a tube current driver (Hewlett-Packard, Model 214A). Maximum amplitude was 2.0 amperes.
- (3) The negative CLEAR pulse was generated by paralleling five tube drivers (Digital Equipment Corp., Model 50; 0.1- μ sec rise time). Maximum amplitude was around 7 amperes.
- (4) The positive CLEAR pulse (1.4 ampere \times 10 turns) was generated by a single tube driver (Digital Equipment Corp., Model 51; 0.1- μ sec rise time) for the cases of $T_r \cong 0.1$ μ sec and by two transistor drivers (Digital Equipment Corp., Model 63; 0.05- μ sec rise time) in parallel for the cases of $T_r \cong 0.02$ μ sec.

Two oscilloscopes were used. The waveforms corresponding to $0.02\text{-}\mu\text{sec}$ rise time were recorded on a Hewlett-Packard 185A sampling oscilloscope, having a response time of about 0.5 nsec. The waveforms corresponding to $0.1\text{-}\mu\text{sec}$ rise time were recorded on a Tektronix 545 oscilloscope with a Type K plug-in unit, resulting in a combined response time of 13 nsec. The response of the Tektronix oscilloscope together with the plug-in unit was checked with a Tektronix Model 108 mercury pulser in order to make sure that no overshoot was obtained and that the response time was short enough.

The delay experienced by the F(t) pulse with 0.02- μ sec rise time (between the time when $\dot{\phi}$ was measured and the time when F was measured) was 3.5 nsec. This time delay was corrected by shifting the oscilloscope trace of F(t) with relation to the $\dot{\phi}(t)$ trace and by photographing the two traces separately.

The temperature of the core was automatically maintained at $30\,^{\circ}\text{C}$ by means of a thermistor probe and an electrical heater imbedded in the outer conductor of the coaxial core holder.

^{*} The rise time T_r is twice the time that it takes the current pulse to reach half of its amplitude as defined later in Fig. 9.

2. COMPUTATION

a. METHOD OF COMPUTATION

Computation of $\dot{\phi}$ of an unloaded core may be performed by the same simple predictor-corrector method used in Report 3 [Eqs. (42), (43), and (44), p. 25], except that $\dot{\phi}$ now includes three components $[\dot{\phi}_{\epsilon}, \text{Eq. (2)}; \dot{\phi}_{i}, \text{Eq. (5)};$ and $\dot{\phi}_{ma}$, Eqs. (18), (19), and (21)] instead of one $[\dot{\phi}_{ma}, \dot{\phi}_{i}]$ Eqs. (18), (19), and (20)]. Following this method. ϕ_{n} at $t=t_{n}=n\Delta t$ (Δt is a short time interval compared with the switching time, τ_{s}) is first predicted from the relation

$$\phi_{n} = \phi_{n-2} + 2 \triangle t \dot{\phi}_{n-1} \qquad (29)$$

This is followed by an iterative computation of $\dot{\phi}_n$ and ϕ_n . Since F and F are both a function of time, $\dot{\phi}_n$ may be formally expressed as

$$\dot{\phi}_n = \dot{\phi}_{\epsilon}(t_n) + \dot{\phi}_i(t_n) + \dot{\phi}_{na}(t_n, \phi_n) \qquad (30)$$

The expression for the corrected ϕ_n is

$$\phi_{n} = \phi_{n-1} + 0.5 \Delta t (\dot{\phi}_{n} + \dot{\phi}_{n-1}) \qquad (31)$$

Equations (30) and (31) are used repeatedly until proper convergence of $\dot{\phi}_n$ and ϕ_n is achieved.

DRIVE CURRENT as. TIME

As shown in Fig. 9, the waveform of the drive current, which is applied to the unloaded core, is approximated by the following functions:

$$i_{D} = \begin{cases} \frac{I_{D}}{2} \frac{t^{2}}{t_{m}^{2}} \left[\frac{t}{t_{m}} \left(u t_{m} - 2 \right) - \left(u t_{m} - 3 \right) \right] & \text{if } 0 \leq t \leq t_{m} \\ \frac{I_{D}}{2} \left[1 + \tanh u (t - t_{m}) \right] & \text{if } t_{m} \leq t \end{cases} , \quad (32a)$$

where I_D is the amplitude, $t_{\rm m}$ is the "half rise time" (i.e., i_D reaches $I_D/2$ at $t=t_{\rm m}$), and u is a waveform parameter (typically, $ut_{\rm m}$ varies

FIG. 9 APPROXIMATE DRIVE-CURRENT FUNCTION

from 1.35 to above 2). The functions given in Eqs. (32) satisfy the following requirements: $i_D = 0$ and $di_D/dt = 0$ at t = 0; the values of i_D and di_D/dt determined from Eq. (32a) are equal to the corresponding values determined from Eq. (32b) at $t = t_m$ (i.e., no discontinuity at $t = t_m$); and $i_D \to I_D$ and $di_D/dt \to 0$ as $t \to \infty$. It can be seen by inspection of $i_D(t)$, Eqs. (32), and its time derivative,

$$\frac{di_{D}}{dt} = \begin{cases}
\frac{I_{D}t}{2t_{m}^{2}} \left[\frac{t}{t_{m}} 3(ut_{m} - 2) - 2(ut_{m} - 3) \right] & \text{if } 0 \leq t \leq t_{m} \\
\frac{I_{D}}{2} u \operatorname{sech}^{2} \left[u(t - t_{m}) \right] & \text{if } t_{m} \leq t \end{cases}, \quad (33a)$$

that these requirements are satisfied. (At t = $t_{\rm m}$, $i_{\rm D}$ = $I_{\rm D}/2$ and $di_{\rm D}/dt$ = $uI_{\rm D}/2$.)

The maximum slope of $i_D(t)$, denoted by S_p , is reached at $t=t_m$. By measuring S_p , the value of u is readily determined from the relation.

$$u = 2S_p/I_D (34)$$

As shown in Fig. 9, the rise time is defined as twice the "half rise time," i.e., $T_r = 2\,t_{\rm m}$.

c. OUTLINE FOR COMPUTER PROGRAM

A computer program for computing $\dot{\phi}_{\epsilon}$, $\dot{\phi}_{i}$, $\dot{\phi}_{ma}$ and the total $\dot{\phi}$ vs. time of an unloaded core is given in Appendix E. The outline of this program is as follows.

- (1) Declare global identifiers of core parameters, circuit parameters, variables, miscellaneous, input-output lists and formats, and PROCEDUREs.
- (2) Read in, compute, and print core and circuit parameters.
- (3) Set the values of the switching parameters and the initial values of the variables.
- (4) For every $n ext{th} \triangle t$ during prescribed switching time T_s :
 - (a) Compute $t_n = t_{n-1} + \Delta t$, i_{Dn} from Eq. (32), $F_n = N_D i_{Dn}$, F_{in} from Eq. (17), and F_n using Eq. (33).
 - (b) Predict ϕ_n from Eq. (29), and compute the following variables in an iterative fashion (no more than six times) until the change in ϕ_n is negligible: $\dot{\phi}_{m\,a\,n}$ [call $\dot{\phi}_{m\,a}$ PROCEDURE], $\dot{\phi}_{\epsilon n}$ [call $\dot{\phi}_{\epsilon}$ PROCEDURE], $\dot{\phi}_{i\,n}$ [call $\dot{\phi}_{i}$ PROCEDURE], $\dot{\phi}_{n}$ [Eq. (30)], and ϕ_{n} [Eq. (31)].
 - (c) Reset index of variables before proceeding to the next Δt .
- (5) Print output $(t, i_D, \dot{\phi}_\epsilon, \dot{\phi}_i, \dot{\phi}_{ma}, \dot{\phi}, \phi, \phi_d, F,$ and number of iterations) every, say, second Δt during the rise of i_D and every tenth Δt thereafter.

d. CORE AND CIRCUIT PARAMETERS

The core parameters fed into the computer program in Appendix E are those of Core E-6.

The parameters for computing $\dot{\phi}_{\pi a}$ [Eqs. (18), (19), and (21)] at $T=29\,^{\circ}\mathrm{C}$ are as follows:

```
l_i = 22.19 mm; l_o = 23.54 mm; \phi_r = 3.45 maxwells; \phi_s = 3.726 maxwells; H_a = 310 amp-turns/m; H_q = 35.0 amp-turns/m; H_n = 30.0 amp-turns/m; F_0'' = 0.95 amp-turn; F_0 = 1.45 amp-turns; F_B = 3.12 amp-turns; \nu = 1.3; \lambda = 0.069 ohm/turn<sup>2.3</sup> amp<sup>0.3</sup>; \rho_p = 0.113 ohm/turn<sup>2</sup>.
```

The values of these parameters are as given in Report 3, p. 23, except for a correction in the value of H_a and very minor corrections in the values of ϕ_s , ν , ρ_p , and F_B . The corrections have been introduced as a result of more careful measurements of core parameters.

For computation of $\dot{\phi}_{\epsilon}$ [Eq. (2)], substitution of the values of l_i , l_o , ϕ_r , ϕ_s , and H_a into Eq. (3) gives ϵ = 0.3895 m μ hy/turn².

Among the core parameters for computing $\dot{\phi}_i$ [Eq. (5)], it was found that F_{0i} = 0.55 amp-turn and ν_i = 1.3. The values of λ_i and, especially, C_i , were found to be dependent on the rise time of F(t). For T_r in the neighborhood of 0.1 μ sec, λ_i = 0.012 ohm/turn^{2·3}amp^{0·3} and C_i = 0.245 amp-turn- μ sec; for T_r around 0.02 μ sec, λ_i = 0.014 ohm/turn^{2·3}amp^{0·3} and C_i = 0.145 amp-turn- μ sec. The parameters F_{0i} , ν_i , λ_i and C_i were determined by a cut-and-try method, in which the difference between experimental $\dot{\phi}(t)$ and computed $(\dot{\phi}_{\epsilon} + \dot{\phi}_{\pi a})$ was in reasonable agreement with the assumed $\dot{\phi}_i$ model, Eq. (5), regardless of the mmf-amplitude value, F_D . Specifically, eight values of F_D , varying from 0.6 amp-turn to 2.4 amp-turns, were examined.

The circuit parameters in the computer program merely describe the waveform of the drive mmf, F(t). These are fed into the program via input-data cards, and include values for I_D (since a single-turn drive winding was used, $F_D = N_D I_D = I_D$), t_m , and S_p [cf. Part D-2(b)].

3. RESULTS

Experimental and computed F(t) and $\dot{\phi}(t)$ waveforms during the beginning of switching are compared in Fig. 10 for the drive mmfs with T_r near 0.1 μ sec. Eight values of amplitude F_D were applied: 0.6, 0.8, 0.9, 1.0, 1.2, 1.5, 2.0, and 2.4 amp-turns. For each F_D value, two sets of experimental and computed F(t) and $\dot{\phi}(t)$ waveforms are compared, using different time scales: Set i (on the left side of Fig. 10) emphasizes $\dot{\phi}(t)$ during the rise time of F(t) (using a time scale of 40 nsec/div); Set ii (on the right) emphasizes $\dot{\phi}(t)$ immediately following the rise of F(t).

The solid lines in Fig. 10 are experimental oscillograms and the dashed lines are computed curves. These waveforms were produced without any manual drafting in the following manner: Negative enlargements of the original white on black experimental oscillograms were made on (transparent) acetate sheets, and the resulting scales of time, F, and $\dot{\phi}$ were inserted into the computer program (Appendix E). The program was run on a Burroughs B-5500 digital computer, and the results, first written on a magnetic tape, were plotted automatically as dashed lines by a CalComp Model 570 plotter. These computed plots and the enlarged negatives of the experimental oscillograms were then superimposed and photographed.

A comparison between experimental and computed F(t) and $\dot{\phi}(t)$ waveforms for the drive mmfs with $T_r \cong 0.02~\mu{\rm sec}$ is shown in Fig. 11. Seven values of F_D were used: 0.6, 0.8, 0.9, 1.0, 1.18, 1.5, and 2.0 amp-turns. As in Fig. 10, for each F_D value, the emphasis is on $\dot{\phi}(t)$ during the rise of F(t) in Set i, whereas Set ii shows the detail of $\dot{\phi}(t)$ following the rise of F(t). As explained previously (cf. Fig. 8) the waveforms of $\dot{\phi}(t)$ are distorted slightly by ringing, especially during the rise of F(t), shown in Set i. The photographic technique for producing Fig. 11 was the same as that used for Fig. 10.

4. Discussion

a. VALIDITY OF THE MODELS DURING THE BEGINNING OF SWITCHING

The results in Figs. 10 and 11 show that, in general, there is a satisfactory agreement between experimental $\dot{\phi}(t)$ waveforms and the switching models for the three components of $\dot{\phi}$ proposed in this report. There are, however, some disagreements that need explanation and further investigation. Only a small portion of these disagreements stems from the differences between the actual F(t) waveforms and the ones assumed in Eqs. (32).

(a) F_D = 0.6 amp-turn
F scale = 0.2 amp-turn/major division
\$\overline{\phi}\$ scale = 2.5 millivolts/turn/major division

(b) F_D = 0.8 amp-turn
 F scale = 0.25 amp-turn/major division
 φ scale = 2.5 millivolts/turn/major division

FIG. 10 EXPERIMENTAL (SOLID LINE) AND COMPUTED (DASHED LINE) F(t) AND $\dot{\phi}$ (t) WAVEFORMS OF UNLOADED CORE E-6 DURING BEGINNING OF SWITCHING, USING F(t) WITH T, OF ABOUT 0.1 μsec

(c) F_D = 0.9 amp-turn

F scale = 0.25 amp-turn/major division

\$\overline{\phi}\$ scale = 2.5 millivolts/turn/major division

(d) F_D = 1.0 amp-turn
F scale = 0.25 amp-turn/major division
\$\phi\$ scale = 2.5 millivolts/turn/major division

Fig. 10 Continued

(e) F_D = 1.2 amp-turn
 F scale = 0.5 amp-turn/major division
 φ scale = 2.5 millivolts/turn/major division

(f) F_D = 1.5 amp-turn
 F scale = 0.5 amp-turn/major division
 φ scale = 5.0 millivolts/turn/major division

Fig. 10 Continued

(g) F_D = 2.0 amp-turns
F scale = 0.5 amp-turn/major division $\dot{\phi}$ scale = 10.0 millivolts/turn/major division

(h) $F_D = 2.4$ amp-turns F scale = 1.0 (for i) and 0.75 (for ii) amp-turn/major division ϕ scale = 12.5 (for i) and 37.5 (for ii) millivolts/turn/major division

Fig. 10 Concluded

FIG. 11 EXPERIMENTAL (SOLID LINE) AND COMPUTED (DASHED LINE) F(t) AND ϕ (t) WAVEFORMS OF UNLOADED CORE E-6 DURING BEGINNING OF SWITCHING, USING F(t) WITH T, OF ABOUT 0.02 $\mu \rm sec$

(c) F_D = 0.9 amp-turn
F scale = 0.25 amp-turn/major division
\$\phi\$ scale = 5.0 millivolts/turn/major division

(d) F_D = 1.0 amp-turn
F scale = 0.25 amp-turn/major division
\$\phi\$ scale = 5.0 millivolts/turn/major division

Fig. 11 Continued

F scale = 0.25 amp-turn/major division φ scale = 5.0 millivolts/turn/major division

F scale = 0.5 amp-turn/major division

 $\dot{\phi}$ scale = 10.0 millivolts/turn/major division

Fig. 11 Continued

(g) $F_D = 2.0$ amp-turns F scale = 0.5 amp-turn/major division $\dot{\phi}$ scale = 10.0 millivolts/turn/major division

Fig. 11 Concluded

The model for the elastic component of $\dot{\phi}$, $\dot{\phi}_{\epsilon} = \epsilon \dot{F}$, turns out to be too simple. It is based on the assumption that the elastic motion of domain walls and elastic rotation of magnetization encounter only pullback (or stiffness) forces that are proportional to the relatively small displacement and small angle of rotation of magnetization. There is, however, a short delay between $\epsilon \dot{F}$ and the actual $\dot{\phi}_{\epsilon}$. This delay is probably caused by viscous damping that is proportional to $\dot{\phi}_{\epsilon}$. Inclusion of the viscous damping will result in a differential equation of the form

$$\delta \overset{\bullet}{\phi}_{\epsilon} + \overset{\bullet}{\phi}_{\epsilon} = \epsilon \overset{\bullet}{F} \quad , \tag{35}$$

where δ is a constant proportional to the viscous damping.

The model for $\dot{\phi}_i$, Eq. (5), appears to agree quite well with experimental $\dot{\phi}(t)$ during the beginning of switching. It should be emphasized that only one core (Core E-6) has so far been investigated thoroughly. The $\dot{\phi}(t)$ waveforms of other tested cores were similar to those of Core E-6; however, these waveforms have not yet been analyzed quantitatively. Clearly, such an investigation, although costly, should be performed with other materials in order to substantiate the proposed $\dot{\phi}_i$ model.

b. VARIATIONS IN SWITCHING PARAMETERS

We have seen that in order to obtain a satisfactory agreement between observed $\dot{\phi}(t)$ waveforms and the model for $\dot{\phi}_i$, the switching parameters λ_i and C_i had to depend on the rise time, T_r , of F(t). A slightly larger λ_i and a smaller C_i correspond to a shorter T_r . This dependence of λ_i and C_i on T_r is very complex, and may, perhaps, be explained qualitatively as follows. If T_r is short, domains in some regions would expand only locally when $F(t) = F_D$, and thus contribute a $\dot{\phi}_i$ component of a short duration. If T_r is long, such local domain expansions are given no chance to occur: before F reaches the local threshold values, flux reversal in these regions is caused by the applied F plus the magnetic poles brought about by oncoming unobstructed domain walls. The shorter T_r is, the larger is the number of nucleation centers around which shortlived, local, domain-wall motions take place, and thus the larger is the mean displacement time of these walls. This argument may explain why λ_i increases and C_i decreases as T_r decreases.

It is interesting to note that $\nu_i = \nu$. Whether this is a coincidence or not remains to be determined after additional core materials are investigated. Some light may be shed on this problem by attempting to explain the physical origin of ν . Conger and Essig hypothesized that the threshold field for domain-wall motion in thin films is distributed randomly over the range between the coercive force and the anisotropy field. As a result, the number of walls, in addition to the wall velocity, increases with H, and the nonlinearity of $1/\tau_s$ vs. H is accounted for. In a similar way, by assuming that $\dot{B}_p = \kappa (H - H_0'')^{\nu}$ [Report 2, p. 38, Eq. (83)], an effective H_0 , denoted by H_0' , that increases with H between H_0'' and H_B [Report 2, p. 38, Fig. 15] was obtained. The motion of locally obstructed domain walls is governed by the same rule. If the value of ν is determined by the distribution function of the threshold field, and if the same distribution function is applicable to F_i , one would expect ν_i and ν to be equal.

We have seen that there is an analogy between the parameters λ , F_0'' , and ν of $\dot{\phi}_{ma}$ and the parameters λ_i , F_i , and ν_i of $\dot{\phi}_i$. Let us carry this analogy a little further. Referring to Eq. (19), $\dot{\phi}_p = \rho_p (F - F_0)$, where $F_0 > F_0''$, if $F_B \leq F$. Hence, we expect that for high F values, compared with those in Figs. 10 and 11, $\dot{\phi}_i$ will become proportional to $(F - F_d^n)$, where $F_d^n > F_{0i}$. This is in agreement with Eq. (4) and with the fact that the ratio $F_0/F_0'' = 1.45/0.95 = 1.52$ is close to the ratio $F_d^n/F_{0i} = 0.775/0.55 = 1.41$ (cf. Report 3, p. 29). In order to verify this conclusion, a drive current with higher F_D values and shorter rise time than in Fig. 11 should be used in the experiment (if T_r is not decreased, $\dot{\phi}_{ma}$ will mask $\dot{\phi}_i$). With our present laboratory equipment, this could be achieved by using a mercury-contact switch and a transmission line. As explained previously, when such an attempt was made, the signal-to-noise ratio was too low to be analyzed meaningfully. We hope to overcome this circuit problem in the future.

c. VARIATION OF $\dot{\phi}(t)$ WITH F_D

In Fig. 10, individual $\dot{\phi}(t)$ waveforms are shown for the different values of F_D . The effect of the magnitude of F_D on the waveform of $\dot{\phi}(t)$ is demonstrated qualitatively in Fig. 12 by showing a multiple exposure of experimental $\dot{\phi}(t)$ oscillograms. The only difference between Fig. 12(a) and Fig. 12(b) is the time scale and the duration of switching. In either figure, the $\dot{\phi}(t)$ oscillograms correspond to F(t) drives of the same rise

FIG. 12 MULTIPLE EXPOSURE OF $\dot{\phi}$ (t) WAVEFORMS OF CORE E-6 CORRESPONDING TO F(t) PULSES OF DIFFERENT AMPLITUDES

time and the following F_D values: 0.6, 0.8, 0.9, 1.0, 1.1, and 1.2 ampturn; the F(t) oscillogram shown above the $\dot{\phi}(t)$ oscillograms corresponds to F_D = 1.2 ampturn.

d. COMPUTED COMPONENTS OF $\dot{\phi}(t)$

The $\dot{\phi}(t)$ waveforms shown in Figs. 10 and 11 are those of the total $\dot{\phi}$. The relative magnitudes of the three components of $\dot{\phi}(t)$ depend on F(t). For example, computed $\dot{\phi}(t)$ and its components are shown in Fig. 13 for the case of F_D = 2.0 amp-turn and T_r = 0.024 μ sec. This information about $\dot{\phi}_{\epsilon}(t)$, $\dot{\phi}_{i}(t)$, and $\dot{\phi}_{\mathbf{z},a}(t)$ is a part of the computer output (cf. Appendix E).

e. COMPUTED ϕ_{ip} AND T_{ip} vs. F_D AND T_r

In Sec. IB-2(d), we have calculated $\dot{\phi}_i(t)$ [Eqs. (8)], and its peak amplitude $\dot{\phi}_{ip}$ [Eq. (11)] for the case of F(t) with a ramp rise

FIG. 13 COMPUTED $\dot{\phi}_\epsilon$, $\dot{\phi}_{\rm i}$, $\dot{\phi}_{\rm ma}$ AND $\dot{\phi}$ vs. t OF CORE E-6 DURING THE BEGINNING OF SWITCHING

followed by a constant amplitude, Eq. (6). Similar computation was performed for the drive current expressed by Eqs. (32) as part of the computed $\dot{\phi}(t)$ in Figs. 10 and 11. Plots of $\dot{\phi}_{ip}$ vs. F_D are shown in Fig. 14 for three values of rise time: $T_r \cong 0.1~\mu{\rm sec}$, $T_r \cong 0.02~\mu{\rm sec}$, and $T_r = 0$. The small variations around a smooth curve in each of the first two cases stem from the small variations in the actual values of T_r . For the case of $T_r = 0$, $T_{ip} = 0$ and $\dot{\phi}_{ip} = \lambda_i (F_D - F_i)^{\nu_i}$ [Eq. (5)], where $F_i = F_{0i}$ tanh (F_D/F_{0i}) [Eq. (17)] and $\lambda_i = 0.014~{\rm ohm/turn}^{2\cdot3}{\rm amp}^{0\cdot3}$.

e. ADDITIONAL LOW $\dot{\phi}_i$ COMPONENT

If $F \leq F_0''$, then $\dot{\phi}_{ma} = 0$ and so

$$\dot{\phi} = \dot{\phi}_{\epsilon} + \dot{\phi}_{i} \qquad (36)$$

Suppose that F is a rectangular pulse of amplitude F_D and duration T. Let us examine the amount of $\Delta \phi$ contributed by $\dot{\phi}_{\epsilon}$ and $\dot{\phi}_{i}$ by the time t = T, before F begins to fall. Since $\dot{\phi}_{\epsilon}$ = $\epsilon \dot{F}$,

$$\Delta \phi_{\epsilon} = \int_{0}^{F_{D}} \epsilon dF = \epsilon F_{D} \qquad (37)$$

Following Eq. (5),

$$\Delta \phi_i = \int_0^T \dot{\phi}_i dt = \lambda_i C_i (F_D - F_i)^{\nu_i - 1} [1 - e^{-T(F - F_i)/C_i}] \quad . \tag{38}$$

As $T \to \infty$, $\Delta \phi_i \to \Delta \phi_{i(\infty)}$, where

$$\Delta \phi_{i(\infty)} = \lambda_i C_i (F_D - F_i)^{\nu_i - 1} \qquad (39)$$

Adding $\Delta\phi_{\epsilon}$ and $\Delta\phi_{i\,(\infty)}$, the total $\Delta\phi$ due to a step F, F = F_D , is

$$\Delta \phi_{(\infty)} = \epsilon F_D + \lambda_i C_i (F_D - F_i)^{\nu_i - 1} \qquad (40)$$

Let us calculate $\Delta\phi_{(\infty)}$ of Core E-6, assuming an F_D value which is less than $F_0''=0.95$ amp-turn, e.g., $F_D=0.9$ amp-turn. The core parameters are as follows: $\epsilon=0.3895$ m μ hy/turn², $\nu_{\perp}=1.3$,

FIG. 14 COMPUTED $\dot{\phi}_{\mathrm{ip}}$ vs. F_D OF CORE E-6 WITH T, AS A PARAMETER

 λ_i = 0.014 ohm/turn^{2·3} amp^{0·3}, C_i = 0.145 amp-turn- μ sec (assumed to be same as for $T_r \cong 0.02~\mu$ sec), and $F_i \cong 0.55$ amp-turn. Substituting these values into Eqs. (37), (39) and (40), we find that $\Delta\phi_\epsilon$ = 0.034 maxwell, $\Delta\phi_{i\,(\infty)}$ = 0.148 maxwell and $\Delta\phi_{(\infty)}$ = 0.182 maxwell.

Now consider the static $\phi(F)$ curve. Starting from $\phi=-\phi_r$, the total flux change involved in reaching a point (F,ϕ_d) on this curve is

$$\Delta \phi_d = \phi_d + \phi_r \qquad . \tag{41}$$

For Core E-6, $F=F_D=0.9$ amp-turn corresponds to $\phi_d=-0.12$ maxwell, and since $\phi_r=3.45$ maxwells, $\Delta\phi_d=3.33$ maxwells.

Comparing $\Delta\phi_{\it d}$ and $\Delta\phi_{\rm (\varpi)},\,\,{\rm we\,\,find\,\,that}\,\,({\rm for\,\,Core}\,\,{\rm E-6})$ $\Delta\phi_d/\Delta\phi_{(\infty)}$ = 3.3/0.182 = 18.3. We conclude from this result that the model for ϕ_i given in Eq. (5) does not account for the very slow flux switching involved in reaching a point on the static $\phi(F)$ curve. conclusion is in agreement with the $\dot{\phi}(t)$ waveforms in Sets (a-ii), (b-ii) and (c-ii) of Figs. 10 and 11. One can detect that after the computed $\dot{\phi}$ has decayed to a negligible value, a very low experimental $\dot{\phi}$ continues to Physically, such a low $\dot{\phi}$ results from the motion of \emph{few} domain walls that are obstructed far from their original position rather than locally. If this interpretation is valid, this very low $\dot{\phi}$ may be considered as an additional component of $\dot{\phi}_i$ whose amplitude is much smaller than $\lambda_i (F-F_i)^{\nu_i}$ and whose time constant is so much larger than $C_i/(F-F_i)$ that the product of its amplitude and its time constant is much larger than $\lambda_i C_i (F - F_i)^{\nu_i - 1}$. An alternative source of this very low $\dot{\phi}$ to be considered is the main $\dot{\phi}$ component, $\dot{\phi}_{\!_{m{m}\,a}}$, with F_0'' decreasing for decreasing F [similarly to \boldsymbol{F}_i , Eq. (17)]. Future investigation of this very low $\boldsymbol{\dot{\phi}}_i$ component should be based on correlation between measured $\phi(F)$ curves obtained by rectangular F pulses of different duration T and calculated $\Delta \phi_d$ - $\Delta \phi_{(\infty)}$.

5. SUMMARY

Verification of the models for the three components of $\dot{\phi}(t)$ was made by comparing experimental $\dot{\phi}(t)$ and computed $\dot{\phi}(t)=\dot{\phi}_{\epsilon}(t)+\dot{\phi}_{i}(t)+\dot{\phi}_{ma}(t)$ during the beginning of the flux switching. The tested core was a thin magnesium-manganese-zinc ferrite ring of OD/ID=1.06 (Core E-6, Report 3, p. 23; $F_{c}=0.9$ amp-turn). The comparison was made for mmf pulses of different amplitude, F_{D} , and rise time, T_{r} : eight values of F_{D} (ranging from 0.6 to 2.4 amp-turns) for $T_{r}\cong0.1$ $\mu{\rm sec}$ and seven values of F_{D}

(ranging from 0.6 to 2.0 amp-turns) for $T_r \cong 0.02~\mu\mathrm{sec}$. Each case was repeated twice, using different time scales. The core and circuit parameters were fed into a computer program which computed $\dot{\phi}_{\epsilon}(t)$, $\dot{\phi}_{i}(t)$, $\dot{\phi}_{\pi a}(t)$ and $\dot{\phi}(t)$. The resulting $\dot{\phi}(t)$ waveforms of the above 2 × 15 cases were machine plotted, and are compared with the experimental oscillograms in Figs. 10 and 11. From this comparison, the following observations are made relative to Core E-6:

- (1) There is a small delay (of the order of 0.15 T_r) between computed $\epsilon F(t)$ and experimental $\dot{\phi}_{\epsilon}(t)$ due, probably, to viscous damping. An improved model for elastic switching is $\delta \ddot{\phi}_{\epsilon} + \dot{\phi}_{\epsilon} = \epsilon F$, where δ is a constant proportional to the viscous damping.
- (2) The parameters λ_i and C_i depend on $T_r\colon$ as T_r decreases, λ_i increases (slightly) and C_i decreases.
- (3) The analogy between $\dot{\phi}_p = \lambda (F F_0)^\nu$ and $\dot{\phi}_{ip} = \lambda_i (F F_i)^{\nu i}$ agrees with the analogy between $\dot{\phi}_p = \rho_p (F F_0)$ and $\dot{\phi}_{ip} = \rho_i (F F_d^n)$ that was proposed in Report 3. Furthermore, $\nu = \nu_i$ and the ratio F_0/F_0'' is close to the ratio F_d^n/F_{0i} . It is expected, therefore, that Eq. (4) is valid for high values of F_D . This may be verified by applying current pulses of high amplitude and very short rise time, such as obtained by using a mercury-relay pulser.
- (4) The flux change $\Delta\phi_{i\,(\infty)}=\int_0^\infty\dot\phi_idt$ is much smaller than the flux change, $\Delta\phi_d=\phi_d+\phi_r$, involved in obtaining a point on the static $\phi(F)$ curve. In order to account for the latter, another term should be added to the expression for $\dot\phi_i$, Eq. (5). This term is expected to be of the same form as the existing expression, except for a much lower amplitude and a very much longer time constant. Alternatively, most of $\Delta\phi_d$ may be accounted for by $\dot\phi_{m\,a}$ if F_0'' becomes lower for low F values.

E. CONCLUSIONS

For the type of ferrite material investigated so far, the $\dot{\phi}(t)$ waveform resulting from a constant-amplitude mmf of a finite rise time consists of three components: elastic, decaying inelastic, and main (bell-shaped) inelastic.

The elastic $\dot{\phi}$ component is described by the model $\dot{\phi}_{\epsilon} = \epsilon F$. This model results in a small delay between experimental and computed $\dot{\phi}(t)$. This delay implies that an improved model for $\dot{\phi}_{\epsilon}$ is of the form $\delta \ddot{\phi}_{\epsilon} + \dot{\phi}_{\epsilon} = \epsilon \dot{F}$, where δ is a constant proportional to the viscous damping.

The decaying $\dot{\phi}$ component, $\dot{\phi}_i$, is described by the model $\dot{\phi}_i = \lambda_i (F - F_i)^{\nu_i} \exp\left[-(t - T_i)(F - F_i)/C_i\right]$, where λ_i , F_{0i} , ν_i , and C_i are switching parameters and T_i is the time F reaches F_i .

The amount of $\Delta \phi$ associated with reaching a point on the static $\phi(F)$ curve for $F \leq F_0''$ is much larger than $\int_0^\infty \dot{\phi}_i dt$. In order to account for this $\Delta \phi$, the existing $\dot{\phi}$ model needs to be modified either by adding a component of the same form as $\dot{\phi}_i$, except of a much lower amplitude and of a much longer time constant, or by lowering F_0'' for low values of F, as was done for F_i .

The main component, $\dot{\phi}_{\mathbf{m}\,a}$, may be expressed by the model $\dot{\phi}_{\mathbf{m}\,a}=\dot{\phi}_{p}\,\eta(\phi)$, where $\dot{\phi}_{p}$ is the peak $\dot{\phi}$, and $\eta(\phi)=1-[(2\phi+\phi_{r}-\phi_{d})/(\phi_{r}+\phi_{d})]^{2}$, and where, for a given F value, ϕ_{d} is the ϕ value on the static $\phi(F)$ curve.

If F is large (compared with the coercive mmf, F_c), computation of $\dot{\phi}_i$ + $\dot{\phi}_{ma}$ may be approximated by the $\dot{\phi}_{ma}$ model alone if ϕ_s replaces ϕ_r in the expression for $\eta(\phi)$. The elastic component, $\dot{\phi}_\epsilon$, may be neglected if only inelastic $\Delta\phi$ is of concern.

Further investigation is needed in the following areas:

- (1) Improving the model for $\dot{\phi}_{\epsilon}$ by including the effect of viscous damping.
- (2) Studying the effect of ϕ and switching history on ϵ .
- (3) Extending the investigation of $\dot{\phi}_i$ to high values of $\emph{F}.$
- (4) Investigating the very slow $\dot{\phi}$ component associated with the static $\phi(F)$ curve.
- (5) Repeating the investigation of the $\dot{\phi}$ components on other types of magnetic materials.

II COMPUTATION OF FLUX SWITCHING IN MAGNETIC CIRCUITS

In Report 3, the switching model for the main component of $\dot{\phi}$ was applied (using a computer program) and verified experimentally for three magnetic circuits: an unloaded core switched by step, ramp, triangular and trapezoidal mmfs; a loaded core driven by step and ramp drives; and a core-diode shift register. In this report, computer programs are provided and the results are compared with experimental data for the following four magnetic circuits:

- (1) Unloaded core driven by F(t) of constant-amplitude, F_D , and rise-time, T_r —computation vs. time of $\dot{\phi}_{\epsilon}$, $\dot{\phi}_{\epsilon}$, $\dot{\phi}_{\epsilon}$, $\dot{\phi}_{\epsilon}$, $\dot{\phi}_{\epsilon}$, $\dot{\phi}_{\epsilon}$, and ϕ_{ϵ} . (See Sec. I-D-2-c.)
- (2) A core loaded by an inductive load (R-L, R-L-C, and R-L-C-diode) and driven by step and ramp mmf—computation vs. time of F, $\dot{\phi}$, ϕ , and the load current, using a more exact algorithm than in Report 3.
- (3) A core-diode-transistor binary counter—computation (vs. time) of three currents and of F, $\dot{\phi}$ and ϕ of each of two cores.
- (4) A loaded, saturable, three-leg core—computation vs. time of F, $\dot{\phi}$, and ϕ of each leg, and computation of division of flux between two legs in parallel as a function of drive current amplitude, load, and relative leg dimensions.

Item (1) is treated in Sec. I-D; Items (2), (3), and (4) are treated in the following sections.

A. LOADED CORE

1. Introduction

In Report 3, flux switching in a loaded core was analyzed (Report 3, pp. 39-55) and a computer program was provided (Report 3, pp. 149-153) for computation of $\dot{\phi}$, ϕ , and i_L (the load current) vs. time. The load consisted of six combinations of a resistance, an inductance, a capacitance, and a diode: R, R-diode, R-L, R-C, R-L-C, and R-L-C-diode. Computed and measured waveforms of $\dot{\phi}(t)$ and $i_L(t)$ were compared for

step and ramp drives. The algorithm used to compute these variables was the same regardless of the type of load. This resulted in accumulation of error in the cases of inductive load (R-L, R-L-C, and R-L-C-diode). Our main objective now is to improve the accuracy of computation for these cases by using a more exact algorithm. An additional objective is to explain why an iterative method of solving a transcendental equation (such as Newton's method) must be applied, as was done in Report 3, if L = 0.

Let us summarize briefly the analysis in Report 3 (Fig. 14, p. 39, and pp. 41-45). A drive current i_D is applied in N_D turns to a core which is coupled by N_c turns to a load. The load is composed of a resistance R_L , an inductance L, a capacitance C, and a diode. The diode voltage is expressed as

$$V_d = i_L R_d + E_k \ln \left(1 + \frac{i_L}{I_0}\right) \qquad , \tag{42}$$

where R_d is a forward resistance, E_k is a voltage constant and I_0 is saturation current. Since $F = N_D i_D - N_c i_L$ and i_D is a given function of t, $\dot{\phi}(F,\phi)$ may be written as $\dot{\phi}(t,\ i_L,\phi)$. Letting $R_L + R_d = R$ and $\int_0^t i_L dt = q$, the load loop equation is

$$\frac{1}{C} q + R i_L + L \frac{d i_L}{d t} + E_k ln \left(1 + \frac{i_L}{I_0} \right) - N_c \dot{\phi}(t, \phi, i_L) = 0 \quad . \quad (43)$$

In Report 3, i_L was solved for transcendentally, using Newton's method of successive iterations. In each jth iteration, corrected values of $\dot{\phi}$ and $i_L=\dot{q}$ were used to correct the values of ϕ and q of the previous iteration, using Eq. (31) and its equivalence for q. Although this method worked well for all load cases, some error was accumulated at each nth Δt as a result of approximating $(di_L/dt)_n$ by $[i_{Ln}-i_{L(n-1)}]/\Delta t$ and $(d^2i_L/dt^2)_n$ by $[(di_L/dt)_n-(di_L/dt)_{n-1}]/\Delta t$ [cf. Report 3, Eqs. (67), (69), and (70), pp. 44-45]. If $L \neq 0$, this error may be reduced by using a different method of evaluating i_{Ln} in each iteration. We thus distinguish between two cases: $L \neq 0$ and L = 0.

2. INDUCTIVE LOAD

If $L \neq 0$, there is no need for a transcendental solution of i_L . The switching function $\dot{\phi}(t, \phi, i_L)$ together with the second-order differential equation, Eq. (43), may be written as a set of three simultaneous differential equations of the first order:

$$\frac{d\phi}{dt} = \dot{\phi}(t, \phi, i_L)$$
 [44(a)]

$$\frac{dq}{dt} = i_L$$
 [44(b)]

$$\frac{di_L}{dt} = \frac{1}{L} \left[N_c \dot{\phi}(t, \dot{\phi}, i_L) - \frac{1}{C} q - Ri_L - E_k ln \left(1 + \frac{i_L}{I_0} \right) \right] \qquad . \quad [44(c)]$$

In these equations, t is an independent variable, and ϕ , q, and i_L are dependent variables. Note that, as required by the various methods of numerical solutions of differential equations, differentials appear on the left side of the equality signs only. The numerical solution of Eqs. (44) may be achieved by various well-known methods, such as Adam's, Runge-Kutta's, Milne's, etc. The simple predictor-corrector method given by Eqs. (29) and (31), which was also used in Report 3, will suffice in this case. In every jth iteration, instead of solving for i_{Ln} transcendentally [cf. Report 3, Eqs. (69) through (72), pp. 44-45], we first evaluate $(di_L/dt)_n$ using Eq. [44(c)], and then compute i_{Ln} from an expression analogous to Eq. (31), i.e.,

$$i_{L_n} = i_{L(n-1)} + 0.5 \Delta t [(di_L/dt)_n + (di_L/dt)_{n-1}]$$
 (45)

Other than the above evaluation if i_{Ln} , the algorithm for computing the various variables if $L \neq 0$ is the same as in Report 3.

3. NONINDUCTIVE LOAD

If L = 0, then the loop equation, Eq. [44(c)], becomes

$$N_c \dot{\phi}(t, \phi, i_L) - \frac{1}{C} q - Ri_L - E_k ln \left(1 + \frac{i_L}{I_0}\right) = 0$$
 (46)

Regardless of whether a diode is present in the load or not, $dq/dt = i_L$ cannot be expressed explicitly as a function of t, ϕ , and q because ϕ is an implicit function of i_L . Hence, we are unable to reduce Eqs. (44) into a set of two simultaneous differential equations with derivatives to the left of the equality signs and functions of the variables $(t,\phi,$ and q) only on the right side. For this reason, we are unable to use any of the conventional methods of numerical solution of differential equations directly. Instead, we substitute

$$q_{n} = q_{n-1} + 0.5 \Delta t [i_{L_{n}} + i_{L(n-1)}]$$
 (47)

into Eq. (46), obtain an implicit equation in i_{Ln} , and solve for i_{Ln} transcendentally. This explains the need for Newton's method in the algorithms described in Report 3. We could, of course, use other methods for the transcendental solution of i_{Ln} . We prefer, however, to use Newton's method because it is very simple and because it is characterized by quadratic convergence, 8 *i.e.*, the error at the jth iteration is proportional to the square of the error at the (j-1)th iteration (both errors are fractional if the condition for convergence is satisfied), thus resulting in a relatively fast convergence. The pitfall to watch for when using Newton's method is when f' [cf. Eqs. (58) and (60) in Report 3] becomes much smaller than unity.

4. Experimental and Computed $\dot{\phi}(t)$ and $i_L(t)$ of Inductively Loaded Core

Experimental and computed $\dot{\phi}(t)$ and $i_L(t)$ waveforms of a loaded core driven by step and ramp drives were compared in Figs. 15 and 16 of Report 3 (pp. 48 through 51). The tested core was Core J-1 (Lockheed 145SC1, 145-mil OD, 90-mil ID) whose switching parameters (cf. Report 3, p. 23) are as follows: l_i = 7.18 mm, l_o = 11.58 mm, ϕ_r = 31.0 maxwells, ϕ_s = 33.48 maxwells, H_a = 250 amp-turns/m, H_q = 26.0 amp-turns/m, H_n = 22.5 amp-turns/m, F_0'' = 0.27 amp-turn, ν = 1.43, ν = 1.64 ohm/turn^{2·43} amp^{0·43}, ν = 0.55 amp-turn, ν = 2.27 ohms/turn², and ν = 1.2 amp-turn. We have recomputed the ν the and ν and ν = 1.2 amp-turn. We have recomputed the ν and ν = 1.2 amp-turn. We have recomputed the ν and ν = 1.43 above. The correspondingly modified computer program is given in Appendix F. The results were machine plotted and are compared in

Fig. 15 for step-F drive and in Fig. 16 for ramp-F drive with the same experimental oscillograms as in Report 3. It is quite clear that the agreement is better than in Figs. 15 and 16 of Report 3. Note, however, that the computed peak $\dot{\phi}$ is now lower than the experimental peak $\dot{\phi}$. This result is of no surprise. In fact, it was expected (but not found) in Report 3 (p. 47). Just as λ and ρ_p of ramp-F switching are smaller than step-F λ and ρ_p , one expects λ and ρ_p of switching under a monotonically decreasing F(t) to be larger than step-F values. Such is the condition in the case of a loaded core switched by step-F or not-too-steep ramp-F drives. The more inductive the load is, the steeper is the decrease of F(t) as ϕ varies from $-\phi_r$ to slightly above zero. This can be seen in Figs. 17 and 18 of Report 3 (pp. 52 and 53). Since step-F values of λ and ρ_p were used to compute the curves in Fig. 15, the resulting value of peak $\dot{\phi}$ is lower than the experimental value.

5. SUMMARY

A modification is made in the algorithm given in Report 3 (p. 41-43) for computing $\dot{\phi}(t)$ and $i_L(t)$ of a loaded core switched by an arbitrary drive. If $L \neq 0$, conventional methods are used to solve three simultaneous differential equations of the first order. If L = 0, the loop equation is implicit in i_L and Newton's method (or any other comparable method) must be applied in the numerical solution of i_L , ϕ , and $\dot{\phi}$. The corresponding computer program is given in Appendix F. The results for $L \neq 0$ are in a better agreement with experimental oscillograms than in Report 3.

B. CORE- DIODE-TRANSISTOR BINARY COUNTER

1. OPERATION

a. TWO-COUNT FLUX SWITCHING

The circuit diagram for a single stage of a core-diode transistor binary counter is shown in Fig. 17.* Note that Cores 1' and 2' belong to the next stage. The circuit operation is described briefly as follows (circuit components and number of turns of windings used in this description are defined in Fig. 17): Initially, Cores 1 and 2 are in a CLEAR state. The counting operation is divided into four modes,

^{*} This binary counter was developed by Alan J. DeVilbiss of Jet Propulsion Laboratory, Pasadena, California, for a future Mariner spacecraft.

(a) N_DI_D = 1.54 amp-turn; N_c = 2; R_L = 1.58
$$\Omega$$
 , L = 1.00 μ hy

(b) N
$$_D$$
I $_D$ = 2.28 amp-turns; N $_c$ = 2; R $_L$ = 0.131 Ω , L = 0.38 μ hy C = 0.253 μf

TC~5094-27

(c) $N_D I_D = 1.80$ amp-turn; $N_c = 2$; $R_L = 0.131\Omega$, $L = 0.38~\mu hy$ $C = 0.253~\mu f$, 1N3604~Diode

FIG. 15 EXPERIMENTAL AND COMPUTED $\dot{\phi}$ (t) AND i (t) WAVEFORMS OF CORE J-1 WHICH IS INDUCTIVELY LOADED AND SWITCHED BY STEP-F DRIVE

(a) $N_D I_D = 3.40$ amp-turns; $T_r = 1.60~\mu sec$ $N_c = 2$; $R_L = 1.58 \Omega$, $L = 1.00~\mu hy$

(b) N $_D I_D$ = 4.55 amp-turns; T $_r$ = 1.40 μsec N $_c$ = 2; R $_L$ = 0.131 Ω , L = 0.38 μhy C = 0.253 μf

TB~5094-28

(c) N $_D I_D = 3.40$ amp-turns; T $_r = 1.40~\mu sec$ N $_c = 2$; R $_L = 0.131 \Omega$, L = 0.38 μhy C = 0.253 μf , 1N3604 Diode

FIG. 16 EXPERIMENTAL AND COMPUTED $\dot{\phi}(t)$ AND $i_L(t)$ WAVEFORMS OF CORE J-1 WHICH IS INDUCTIVELY LOADED AND SWITCHED BY RAMP-F DRIVE

(a) CIRCUIT DIAGRAM

(b) DRIVE CIRCUITS

TC-5094-29

FIG. 17 A SINGLE STAGE OF A CORE-DIODE-TRANSISTOR BINARY COUNTER where Modes I and II correspond to a STORE count, and Modes III and IV correspond to a CARRY count:

Mode I—An exponentially decaying current pulse, i_s , sets Cores 1 and 2 simultaneously. The flux switching is relatively fast. Diode d_1 is conducting, and the transistor is maintained in an OFF state.

Mode II—An exponentially rising current pulse i_c clears Core 1 at a relatively slow switching rate, while Core 2 remains in a SET state. Diode d_1 is conducting, and the transistor is maintained in the OFF state.

Mode III—An exponentially decaying current pulse, i_{sr} , tends to set both cores, but since Core 2 is already set, it only sets Core 1. The voltage $N_{B1}\dot{\phi}_1$ brings the transistor into the ON state, and the resulting collector current i_s helps current i_{sr} to set Core 1, thus maintaining

the transistor in the ON state (positive feedback, characteristic of blocking oscillator performance). Current i_c , as it builds up exponentially through an R-L circuit (diode d_2 is blocked), switches relatively slowly three additional cores that are not shown in Fig. 17: it clears (or tends to clear) Core 1", which is similar to Core 1, except two stages ahead (similarly, current i_c , which clears Core 1 in Mode II, is generated two stages behind); it clears a transfluxor core which is used for nondestructive readout of the binary state of the stage under discussion; and it sets the transfluxor core of the next stage. Toward the end of switching of Core 1, current i_{sr} has decayed to a negligible value, current i_c is approaching its asymptotic value, $I_c = V/R_1$ (to be exact, V stands for the supply voltage minus the collector-emitter voltage), and the transistor base current tends to decrease. Because of the decrease in i, and the base current and the increase in i_c , at a certain instant the net mmf of Core 2 becomes high enough to clear Core 2. As in the case of Core 1, a positive feedback maintains the transistor in the ON state until Core 2 reaches a CLEAR state. The switching of both Core 1 and Core 2 in Mode III is relatively slow because it is done sequentially. Upon termination of the switching in Core 2, the transistor turns off, Diode d_2 starts to conduct current $i_L^{}$ via $R_1^{}$ and $L_1^{}$, and the stored energy in the inductor L is dissipated in resistances \boldsymbol{R}_1 and \boldsymbol{R}_2 and in switching Core 1' and Core 2' (if the latter is initially not fully set) by current pulse i, or in switching Core 1' alone (if Core 2' is initially fully set) by current pulse i_{sr} . Note that the current pulses i_s and i_{sr} driving the stage under discussion in Modes I and III, respectively, have been generated in a similar fashion in the previous stage.

Mode IV—A current pulse i_c clears Core 1 at a relatively slow switching rate, while Core 2 remains in a CLEAR state and the transistor is in the OFF state.

b. RANGE OF SUPPLY VOLTAGE

As the supply voltage, V, decreases below a certain value, the binary counter continues to function properly even though the cores are not fully set. A further decrease in V will cause a further decrease in $\Delta\phi_1$ and $\Delta\phi_2$, and it becomes necessary to determine how low $\Delta\phi_1$ and $\Delta\phi_2$ (or V) can be before the binary counter starts to malfunction. Let us examine incomplete flux switching during a cycle of two counts (four modes of operation), as shown in Fig. 18. In Mode I, switching is incomplete

FIG. 18 INCOMPLETE FLUX SWITCHING IN FOUR MODES OF OPERATION OF A CORE-DIODE-TRANSISTOR BINARY COUNTER

because i_s either decays too fast or has a too-low amplitude or both (flux switching is mmf limited). In Mode II, Core 1 is cleared to $-\phi_r$ (current i_c is high for a long enough period to complete the required amount of switching). In the beginning of Mode III, to be referred to as Submode III-A, both cores start switching toward positive saturation as in Mode I, until Core 2 reaches positive saturation, and the transistor turns on. Core 1 completes its switching to $+\phi_r$, and Core 2 is then cleared to $-\phi_r$ because the transistor stays saturated as long as nonnegligible flux switching takes place in at least one of the cores. In Mode IV, Core 1 is fully switched to $-\phi_r$ because i_c is high for a long enough period.

We see that the binary counter operates properly, even though only partial switching takes place in Mode I. How low can $\Delta\phi_1$ and $\Delta\phi_2$ be in Mode I? To answer this question, let us refer to Submode III-A. In order to turn the transistor on, we must assure that Core 2 stops switching before Core 1 stops switching, i.e., that Core 2 reaches positive saturation before i_s decays to the stop-switching threshold value of Core 1. Let $\Delta\phi_{21}$ and $\Delta\phi_{2111A}$ denote $\Delta\phi_2$ in Mode I and Submode III-A, respectively (ideally, $\Delta\phi_{2111A}=0$). If both $\Delta\phi_{21}$ and $\Delta\phi_{2111A}$ are mmf-limited, and both are assumed to be governed by nearly the same switching parameters, then $\Delta\phi_{21}\cong\Delta\phi_{2111A}\leq\phi_r$, because both result from the same insufficient drive current, i_s . Since we do not want $\Delta\phi_{21}+\Delta\phi_{2111A}$ to be less than $2\phi_r$, we conclude that $\Delta\phi_{21}$ must exceed ϕ_r .

Let us examine $\Delta\phi_{2\,IIIA}$ more carefully. In Submode III-A, Core 2 is initially in a partially switched state, and therefore both λ and F_0'' are smaller (e.g., by 30%) than if initially $\phi_2 = -\phi_r$. These two factors are opposing: the decrease in λ requires a larger $\Delta\phi_{2\,I}$, whereas the decrease in F_0'' allows $\Delta\phi_{2\,I}$ to be smaller. Which factor predominates depends on the magnitude of the average net mmf of Core 2 during Submode III-A relative to F_0'' . We must also remember that because of the "wing" in the static $\phi(F)$ curve, $\Delta\phi_{2\,I} + \Delta\phi_{2\,IIIA}$ may be slightly smaller than $2\phi_r$. It is thus quite clear that exact calculation of the lower limit of $\Delta\phi_{2\,I}$ is extremely complex. As an approximation, we shall maintain our previous conclusion that in order to turn the transistor on in Mode III, we require that $\Delta\phi_{2\,I} > \phi_r$. This criterion may be used to determine the minimum value of V, V_{\min} .

Since the fast flux switching in Mode I determines the bottom boundary of the supply voltage, and since the slow flux switching in the other modes of operation can be analyzed manually by assuming that the net mmf follows the static $\phi(F)$ curve [cf. Figs. 18(b), (c), and (d)]—we shall proceed with the analysis of Mode I only.

2. ANALYSIS OF MODE I

a. SIMPLIFYING ASSUMPTIONS

Before analyzing Mode I, let us refer to Fig. 17 and examine the termination of Mode III. When Core 2 is cleared to negative saturation and $\dot{\phi}_2$ approaches zero, the transistor starts to pull out of saturation because of insufficient base current. As a result, i_c starts to drop and a positive elastic $\dot{\phi}_2$ is generated. The voltage $N_{B2}\dot{\phi}_2$, which is clamped by Diode d_1 , acts as a reverse bias on the transistor, and thus causes the latter to turn off faster than if the bias voltage were zero.

As soon as the drop in i_c is such that

$$-L \frac{di_c}{dt} = i_c R_1 \qquad , \tag{48}$$

Diode d_2 starts to conduct current i_L . Equation (48) also holds true when the transistor is completely turned off. The variation of i_c during the transient period in which the transistor is pulled out of saturation depends on the base current and the collector current. A solution for i_c during this period is complex and is beyond the scope of this work. We shall, therefore, simplify the problem by assuming that during the above transient period, $i_L(t)$, as it rises from zero to I_c (the current value that L tends to maintain), is given and that Eq.(48) holds, i.e., the voltage across R_1 and L is

$$\nu_{R_1-L} = R_1 i_L + L \frac{di_L}{dt} \qquad . \tag{49}$$

b. BASIC EQUATIONS

Mode I begins as soon as the transistor of the previous stage starts to pull out of saturation. Based on the simplifying assumptions above and since the forward voltage drop across Diode d_2 is much smaller

than $R_1i_L + L(di_L/dt)$, the equivalent circuit for Mode I is as shown in Fig. 19. The total resistance of the windings with N_{s1} and N_{s2} turns is denoted by R_3 and that of the windings with N_{B1} and N_{B2} turns is denoted by R_4 .

FIG. 19 EQUIVALENT CIRCUIT FOR MODE I OF A SINGLE STAGE IN A CORE-DIODE-TRANSISTOR BINARY COUNTER

There are seven equations with seven unknowns. The seven equations include two mmf equations (one for each core), two $\dot{\phi}(F,\phi)$ equations (one for each core), and three loop equations. The unknowns are the following time variables: i_L (beyond its rise time), i_s (the current driving the cores), i_d (the load current in Diode d_1), F_1 (the net mmf of Core 1), F_2 (the net mmf of Core 2), ϕ_1 (the flux of Core 1), and ϕ_2 (the flux of Core 2).

By inspection of Fig. 19, the mmf equations are

$$F_1 = N_{s1}i_s + N_{B1}i_d \tag{50}$$

and

$$F_2 = N_{s2}i_s - N_{B2}i_d . (51)$$

Using Eqs. (2) and (18) through (20),

$$\dot{\phi}_1 = \epsilon \dot{F}_1 + \dot{\phi}(F_1, \phi_1) \tag{52}$$

and

$$\dot{\phi}_2 = \epsilon \dot{F}_2 + \dot{\phi}(F_2, \phi_2) \qquad , \tag{53}$$

where $\dot{\phi}(F,\phi) = \dot{\phi}_p \{1 - [(2\phi + \phi_s - \phi_d)/(\phi_s + \phi_d)]^2\}$. Note that $\dot{\phi}(F,\phi)$ is used as an approximation for $\dot{\phi}_{ma}(F,\phi) + \dot{\phi}_i(F,t,T_i)$, Eq. (22). By inspection of Fig. 19, the three loop equations are

$$L \frac{di_{L}}{dt} + i_{L}R_{1} + i_{s}R_{3} + N_{s1}\dot{\phi}_{1} + N_{s2}\dot{\phi}_{2} = 0$$
 (54)

$$i_s R_3 + N_{s1} \dot{\phi}_1 + N_{s2} \dot{\phi}_2 - (i_L - i_s) R_2 = 0$$
 (55)

and

$$i_d R_4 + V_d + N_{B1} \dot{\phi}_1 - N_{B2} \dot{\phi}_2 = 0$$
 , [56(a)]

where [cf. Eq. (42)]

$$V_d = i_d R_d + E_k ln \left(1 + \frac{i_d}{I_0} \right)$$
 [56(b)]

is the forward voltage drop across Diode d_1 .

We now wish to apply the models for inelastic and elastic switching in the numerical solutions of Eqs. (50) through (56).

3. TRANSCENDENTAL SOLUTION OF CURRENTS

We wish to solve Eqs. (50) through (56) at every nth Δt . For the sake of convenience, the subscript n will be omitted entirely and the subscripts (n-1), (n-2), etc., will be replaced by the subscripts (-1), (-2), etc. In other words, at every nth Δt , we identify n with zero.

Since the functions F_1 vs. t and F_2 vs. t are not known a priori, we shall evaluate F_1 and F_2 as ratios of differences rather than differentials, i.e.,

$$\dot{F}_{1} = \left[F_{1} - F_{1(-1)}\right] / \Delta t \tag{57}$$

and

$$\dot{F}_{2} = [F_{2} - F_{2(-1)}]/\Delta t \qquad (58)$$

Note that $F_{1(-1)}$ and $F_{2(-1)}$ are known quantities which were evaluated while solving for the time variables of the previous Δt . Substitution of Eqs. (50) and (57) into Eq. (52) and substitution of Eqs. (51) and Eq. (58) into Eq. (53) results in two simultaneous nonlinear differential equations which are formally expressed as

$$\dot{\phi}_1 = f_1(i_s, i_d, \phi_1) \tag{59}$$

and

$$\dot{\phi}_2 = f_2(i_s, i_d, \phi_2)$$
 (60)

Substitution of Eqs. (59) and (60) into Eq. (54) gives

$$\frac{di_L}{dt} = -\frac{1}{L} \left[i_L R_1 + i_s R_3 + N_{s1} f_1(i_s, i_d, \phi_1) + N_{s2} f_2(i_s, i_d, \phi_2) \right] . \quad (61)$$

Note that Eqs. (59), (60), and (61) form a set of three simultaneous differential equations of the first order.

If Eqs. (55) and (56) did not include $\dot{\phi}_1$ and $\dot{\phi}_2$, they could be solved for i_s and i_d . Knowing i_s and i_d , we could then use conventional methods in order to solve Eqs. (59) through (61), which form a set of three simultaneous differential equations with differentials on the left side and functions of unknown time variables $(\phi_1,\phi_2,\text{ and }i_L)$ on the right side of the equality signs. However, since Eqs. (55) and (56) do include $\dot{\phi}_1$ and $\dot{\phi}_2$, we have to modify the conventional methods of solving differential equations by incorporating a transcendental solution for i_s and i_d . The latter will be done next, using Newton's method for solving two simultaneous implicit equations.

Following Eqs. (56) and (55), we are looking for the roots \boldsymbol{i}_d and \boldsymbol{i}_s of the equations

$$f = N_{B_2} \dot{\phi}_2 - N_{B_1} \dot{\phi}_1 - i_d (R_d + R_4) - E_k ln \left(1 + \frac{i_d}{I_0}\right) = 0$$
 (62)

and

$$g = n_{s2}\dot{\phi}_2 + N_{s1}\dot{\phi}_1 + i_s(R_2 + R_3) - i_LR_2 = 0 . \qquad (63)$$

Following Eqs. (50) and (51), $\partial F_1/\partial i_d = N_{B1}$, $\partial F_2/\partial i_d = -N_{B2}$, $\partial F_1/\partial i_s = N_{s1}$, and $\partial F_2/\partial i_s = N_{s2}$. Hence, the partial derivatives of f and g are as follows:

$$\frac{\partial f}{\partial i_d} = -\left(N_{B2}^2 \dot{\phi}_2' + N_{B1}^2 \dot{\phi}_1' + R_d + R_4 + \frac{E_k}{i_d + I_0}\right) , \qquad (64)$$

$$\frac{\partial g}{\partial i} = N_{s2}^2 \dot{\phi}_2' + N_{s1}^2 \dot{\phi}_1' + R_2 + R_3 \qquad , \tag{65}$$

and

$$\frac{\partial f}{\partial i_s} = -\frac{\partial g}{\partial i_d} = N_{s2} N_{B2} \dot{\phi}_2' - N_{s1} N_{B1} \dot{\phi}_1' \qquad (66)$$

The corrections to be added to $i_{\it d}$ and $i_{\it s}$ at each iteration (until both are negligible) are 9

$$\delta i_d = \frac{1}{D} \left(-f \frac{\partial g}{\partial i_s} + g \frac{\partial f}{\partial i_s} \right)$$
 (67)

and

$$\delta i_{s} = \frac{1}{D} \left(f \frac{\partial g}{\partial i_{d}} - g \frac{\partial f}{\partial i_{d}} \right)$$
 (68)

where

$$D = \left(\frac{\partial f}{\partial i_d}\right) \left(\frac{\partial g}{\partial i_s}\right) - \left(\frac{\partial f}{\partial i_s}\right) \left(\frac{\partial g}{\partial i_d}\right) \qquad (69)$$

Under certain conditions, the convergence to the correct solution of i_d (or i_s) is oscillatory and slow. This can be detected by noticing that δi_d (or δi_s) alternates sign between two consecutive iterations and that its absolute value decreases by only a small percentage. In many cases, this situation may be remedied by correcting i_d (or i_s) by half of δi_d (or δi_s), as was done in Report 3 [Eq. (58a), p. 42].

The transcendental solution of i_d and i_s described above will be incorporated into the numerical solution of the time variables, using two types of numerical solutions of differential equations, a simple method and a more complex one (Runge-Kutta's followed by Adams'). This duplication is designed in order to check the accuracy of using a simple method in this type of problem by comparing the results with the ones obtained by using a more complex and exact method.

4. COMPUTATION USING A SIMPLE METHOD

a. METHOD OF SOLUTION

Simple predictor-corrector equations, similar to Eqs. (29) and (31), are used. Letting y stand for ϕ_1 , ϕ_2 , and i_L , these are:

$$y = y_{(-2)} + 2\Delta t \dot{y}_{(-1)} \tag{70}$$

for prediction, and, after \dot{y} is evaluated from the differential equation,

$$y = y_{(-1)} + 0.5 \Delta t [\dot{y} + \dot{y}_{(-1)}]$$
 (71)

for correction.

b. OUTLINE FOR COMPUTER PROGRAM

The computer program for the core-diode-transistor binary counter, using a simple method of solution, is given in Appendix G. The program is written in ALGOL-60 language, and has the following outline:

- (1) Declare all identifiers (core parameters, circuit parameters, variables, and miscellaneous), output lists and formats.
- (2) Declare PROCEDUREs $\dot{\phi}_{\epsilon}(F, \triangle t, NV, \dot{\phi}'_{\epsilon})$, Appendix A, and $\dot{\phi}(F, \phi, \dot{\phi}, \dot{\phi}^*)$, Appendix D-2.
- (3) Set values of core and circuit parameters.
- (4) Set initial values of variables.

(5) Compute a rough approximation for the value of τ_s , using the relations*

$$I_{s} = \left(\frac{V}{R_{1}}\right) \frac{R_{2}}{R_{2} + 0.6 \rho_{p} (N_{s1}^{2} + N_{s2}^{2})}$$
 (72)

and

$$\tau_{s} \stackrel{\cong}{=} \frac{2\phi_{r}(N_{B1}^{2} + N_{B2}^{2})}{0.6 N_{B2}\rho_{p} [I_{s}(N_{s1}N_{B1} + N_{s2}N_{B2}) - F_{0}''(N_{B1} + N_{B2})]}$$
(73)

Compute $I_c = V/R_1$.

- (6) Print heading (core parameters, circuit parameters, and output variables) and initial values of output variables.
- (7) For every nth $\triangle t$ during switching time, do the following:
 - (a) Lower the Δt index of the time variables computed previously by one.
 - (b) Set $\Delta t = \tau_s/1000$ during the rise time, T_r , of $i_L(t)$ and $\Delta t = \tau_s/500$ for $t \ge T_r$.
 - (c) If $t \leq T_r$, compute i_L from a given empirical expression.
 - (d) Compute first approximations for i_L (if $t > T_r$), ϕ_1 , and ϕ_2 , using Eq. (70), and for i_s and i_d , using the relations $i_s \approx 2i_{s(-1)} i_{s(-2)}$ and $i_d \approx 2i_{d(-1)} i_{d(-2)}$.
 - (e) Until a specified convergence condition is achieved, compute the following steps in a loop:

$$F_{1}$$
 [Eq. (50)];
 F_{2} [Eq. (51)];
 \dot{F}_{1} [Eq. (57)];
 \dot{F}_{2} [Eq. (58)];
 $\dot{\phi}_{ma1} = \dot{\phi}(F_{1}, \phi_{1}, \dot{\phi}'_{ma1}, \dot{\phi}'_{1})$ [Appendix D-2];
 $\dot{\phi}_{\epsilon_{1}} = \dot{\phi}_{\epsilon}(\dot{F}_{1}, \Delta t, NV, \dot{\phi}'_{\epsilon_{1}})$ [Appendix A];
 $\dot{\phi}_{1} = \dot{\phi}_{ma1} + \dot{\phi}_{\epsilon_{1}};$
 $\dot{\phi}'_{1} = \dot{\phi}'_{1} + \dot{\phi}'_{1};$

Equations (72) and (73) have been derived by using average, constant values of ρ , $\overline{\rho} \cong 0.6 \ \rho_p$, in a rough calculation of the switching time for $\Delta \phi_1 = 2\phi_r$.

```
\dot{\phi}'_{ma2} = \dot{\phi}(F_2, \phi_2, \dot{\phi}'_{ma2}, \dot{\phi}^*_2) [Appendix I)-2];
 \dot{\phi}_{\epsilon 2} = \dot{\phi}_{\epsilon} (\dot{F}_{2}, \Delta t, NV, \dot{\phi}'_{\epsilon 2}) [Appendix A];
 \dot{\phi}_2 = \dot{\phi}_{ma2} + \dot{\phi}_{\epsilon 2};
 \dot{\phi}_2' = \dot{\phi}_{\alpha\alpha2}' + \dot{\phi}_{\epsilon2}';
 If t > T_r, di_L/dt [Eq. (54)] and i_L [Eq. (71)];
 \phi_1 [Eq. (71)];
 \phi_2 [Eq. (71)];
 V_d [Eq. (56b) if N_{B2}\dot{\phi}_2 > N_{B1}\dot{\phi}_1; otherwise, N_{B2}\dot{\phi}_2 - N_{B1}\dot{\phi}_1];
 f [Eq. (62)];
 g [Eq. (63)];
\partial f/\partial i_d [Eq. (64)];
\partial_{\mathbf{g}}/\partial i [Eq. (65)];
\partial f/\partial i [Eq. (66)];
\partial g/\partial i = -\partial f/\partial i:
D [Eq. (69)];
\delta i_d [Eq. (67)];
\delta i_s[Eq. (68)].
```

Add δi_d to previous i_d , but if the sign of δi_d is different from the previous one, add only $0.5 \ \delta i_d$; add δi_s to previous i_s , but if the sign of δi_s is different from the previous one, add only $0.5 \ \delta i_s$.

Repeat the above steps if either $\left|\delta i_d\right| > 0.0001 \left|i_d\right|$ or $\left|\delta i_s\right| > 0.0001 \left|i_s\right|$, but no more than 19 times. Count the number of times this convergence condition fails to be satisfied.

Repeat Steps (a) through (e) unless $\dot{\phi}_1$ = 0 and $\dot{\phi}_2$ = 0 and ϕ_1 > -0.9 ϕ_r .

(8) Print output $(t, i_L, i_s, F_1, \phi_1, \dot{\phi}_1, F_2, \phi_2, \dot{\phi}_2, i_d, V_d, \dot{\phi}_{\epsilon 1}, \dot{\phi}_{\epsilon 2}, \text{ number of iterations, cumulative number of convergence failures), say, once every 20th <math>\Delta t$.

C. EXPERIMENTAL VERIFICATION

A single stage of a core-diode-transistor binary counter, Fig. 17, was built using the following components:

Core

Lockheed 100SCl ferrite core (OD = 100 mils, ID = 70 mils, h = 30 mils) whose switching parameters at room temperature (25°C) are as follows: $l_i = 5.59$ mm; $l_o = 7.98$ mm; $\phi_r = 6.25$ maxwells; $\phi_s = 7.00$ maxwells; $H_a = 290$ amp-turns/m; $H_q = 42.7$ amp-turns/m; $H_n = 38.0$ amp-turns/m; $\nu = 1.207$; $\lambda^n = 0.64$ ohm/turn^{2.207} amp^{0.207}; $F_0'' = 0.35$ amp-turn; $\rho_s = 0.948$ ohm/turn²; $\rho_s = 0.805$ amp-turn; $\rho_s = 0.948$ ohm/turn.

Circuit

Number of turns: $N_{s1} = 11$; $N_{s2} = 12$; $N_{B1} = 16$; $N_{B2} = 20$; $N_{c1} = N_{c2} = 12$.

Resistances (ohms): $R_1 = 107.36$; $R_2 = 199.55$; $R_3 = 0.34$; $R_4 = 0.53$.

Inductance: L = 0.202 millihenry.

Diodes d_1 and d_2 : FD 643; $E_k = 0.0578$ volt; $I_0 = 0.0615$ microampere; $R_d = 0.1$ ohm.

Transistor: 2N1613.

Drive

Supply voltage (minus collector-emitter voltage drop): V = 27 volts; 8.6 volts.

Rise time of i_L : T_r = 0.13 microsecond. Using a library computer program for polynomial curve fitting, the following empirical expressions for $i_L(t)$ during $0 \le t \le T_r$ were fit to the rising portion of $i_L(t)$ waveform (V = 27 volts) from i_L = 0 (at t = 0) to i_L = 0.252 ampere (at t = 0.13 μ sec), in which I_c = V/R_1 , t is in seconds, and T_n = 13 - t · 108:

$$i_{L} = \frac{I_{c}}{0.252} \cdot \begin{cases} 1.02 \cdot 10^{19} t^{8/3} & \text{if } 0 \leq t < 0.02 \cdot 10^{-6} \\ 4 \cdot 10^{6} t - 0.05 & \text{if } 0.02 \cdot 10^{-6} \leq t < 0.06 \cdot 10^{-6} \\ 0.252 - 0.01 (0.00947 + T_{n} \{-0.3169 + T_{n} [1.729261 + T_{n} (-0.575947 + T_{n} \cdot 0.073769)]\}) & \text{if } 0.06 \cdot 10^{-6} \leq t < 0.13 \cdot 10^{-6} \end{cases}$$

$$(74)$$

The above core, circuit, and drive parameters were inserted into the computer program, and the results were machine plotted. Experimental oscillograms of $i_L(t)$, $i_s(t)$, $\dot{\phi}_1(t)$, $\dot{\phi}_2(t)$, $i_d(t)$, $V_d(t)$ were superimposed on computed waveforms. These are compared in Fig. 20 for V=27.0 volts and in Fig. 21 for V=8.6 volts.

FIG. 20 EXPERIMENTAL AND COMPUTED CURRENT AND VOLTAGE WAVEFORMS IN MODE I. OF A CORE-DIODE-TRANSISTOR BINARY COUNTER FOR V = 27 VOLTS Time scale = $0.1~\mu sec/major div$.

FIG. 21 EXPERIMENTAL AND COMPUTED CURRENT AND VOLTAGE WAVEFORMS IN MODE I OF A CORE-DIODE-TRANSISTOR BINARY COUNTER FOR V = 8.6 VOLTS Time scale = 0.2 μ sec/major div.

5. COMPUTATION USING RUNGE-KUTTA, AND ADAMS METHODS

a. METHOD OF SOLUTION

The computation described in the previous section is based on a simple method of solving a set of differential equations. One may, then, doubt the accuracy of the computation. In order to check this accuracy, a second computer program was written, using conventional and more complex methods of solution: the Runge-Kutta method for starting the computation in the first four Δt , and the Adams method thereafter. The description of these methods may be found in several textbooks. 7,9

b. COMPUTER PROGRAM

The computer program for the core-diode-transistor binary counter, using the Runge-Kutta and Adams methods, is given in Appendix H. The program language is ALGOL-60. The outline of this program is similar to the outline of the program using simple methods of solution, Part B-4-b, except for the following. The differential equations and the transcendental solutions for i_d and i_s are declared in a special PROCEDURE, F(X, Y, DX) in which X stands for the independent variable (t), Y stands for an array of the dependent variables $(\phi_1, \phi_2, \text{ and } i_L)$, and DX stands for an array of the derivatives $(\dot{\phi}_1, \dot{\phi}_2, \text{ and } di_L/dt)$.

The computer program for the Runge-Kutta method is a slightly modified version of a library PROCEDURE RKSTARTS (K, NF, X1, H, Y, YPR, F), 10 where K is the number of differential equations (here, K = 3), NF is the number of Δt steps for which the computation is repeated (with the use of Adams method, NF = 4), X1 is the initial value of the independent variable (here, $X1 = t_0 = 0$), H is the step size (here, $H = \Delta t$), Y and YPR are identifiers for two $(NF + 1) \cdot K$ arrays for storing the values of the dependent variables and their derivatives, respectively, (at t = 0, Δt , $2\Delta t$, ..., $NF \cdot \Delta t$), and F is the PROCEDURE F(X, Y, DX). The computer program for the Adams method is also a slightly modified version of a library PROCEDURE, 11 ADAMS (X, Y, YPRIME, N, EU, EL, EPS, H, HMIN), where X is the independent variable (t), Y and YPRIME are arrays similar to those used above for the dependent variables and their derivatives, \emph{N} is the number of differential equations (here, N = 3), EU and EL are upper and lower bounds, respectively, of relative error, EPS is the minimum absolute value for any dependent variable to be used as a reference for evaluation of the relative error, H is the step size (Δt) that depends on EU and EL (if any equation error exceeds EU, H is halved, and if all errors are below EL, H is doubled), and HMIN is the minimum value that H may be reduced to. It can be seen in Appendix H that $\Delta t = \tau_s/500$, where τ_s is evaluated from Eqs. (72) and (73), and $\min(\Delta t) = \Delta t/10$. Also, during $0 \le t \le T_{r}$, EU = 0.001 and EL = 0.0001, whereas if $t > T_r$, EU = 0.005 and EL = 0.001. For $t \ge T_r$, di_L/dt was solved for, using Eq. (54), but for $t \le T_r$, di_L/dt was derived by differentiating Eq. (74):

$$\frac{di_L}{dt} = \frac{I_e}{0.252} \cdot \begin{cases} 2.72 \cdot 10^{19} t^{5/3} & \text{if} & 0 \le t < 0.02 \cdot 10^{-6} \\ 4 \cdot 10^6 & \text{if} & 0.02 \cdot 10^{-6} \le t < 0.06 \cdot 10^{-6} \\ 10^5 \{-0.316910 + T_n [3.458522 \\ + T_n (-1.727841 + T_n \cdot 0.295076)]\} & \text{if} & 0.06 \cdot 10^{-6} \le t < 0.13 \cdot 10^{-6} \end{cases}$$

$$(75)$$

where t is measured in seconds and $T_n = 13 - t \cdot 10^8$.

c. RESULTS

The computed results came out very close to those obtained by the simple method of solution. The largest differences were in the third place after the decimal point, and could hardly be detected in the machine plots of the results. This is demonstrated in Fig. 22 by superimposing computed $\dot{\phi}_1(t)$ and $\dot{\phi}_2(t)$ waveforms for V=27 and V=8.6 volts obtained by the two methods of solution. The agreement between any other pair of computed waveforms is either similar to or better than that shown in Fig. 22.

6. Discussion

a. VALIDITY OF COMPUTATION

The agreement between the computed and the experimental results is satisfactory in general. In the case of $i_d(t)$, the agreement is poor because i_d is a nonlinear function of the voltage across the diode, V_d , and because V_d is the difference between two voltages, $N_{B\,2}\dot\phi_2$ and $N_{B\,1}\dot\phi_1$, whose magnitudes are close to each other. Any small relative error in $\dot\phi_2$ or $\dot\phi_1$ or both (if of opposite signs) will result in a magnified relative error in i_d if V_d is above the "bias" voltage, i.e., above the knee of the forward characteristic of the diode.

The computation of the time variables during the rise time of $i_L(t)$ is limited by two drawbacks: First, the collector current, i_c , is ignored by assuming that $L(di_c/dt) + i_cR_1 = 0$, Eq. (48), while the transistor pulls out of saturation. Second, empirical expressions for $i_L(t)$ are fit to experimental data. Both drawbacks could be overcome by incorporating a dynamic switching model for the transistor. This was not done because of the added complexity resulting from the use of this model and

FIG. 22 SUPERPOSITION OF $\dot{\phi}$ (t) WAVEFORMS COMPUTED BY A SIMPLE METHOD AND $\dot{\phi}$ (t) WAVEFORMS COMPUTED BY RUNGE-KUTTA AND ADAMS METHODS

because such a model is beyond the scope of our work. Instead of fitting an exact function for $i_L(t)$, we could have assumed a sinusoidal function or a ramp function between t=0 and $t=T_r$. Although such alternatives do not depend on curve fitting, the rise time still has to be furnished and the results of computation include larger errors. Another alternative with an even larger error is to ignore the switching time of the transistor and assume that $T_r=0$.

b. VARIATIONS OF $\boldsymbol{\phi}_1(\boldsymbol{F}_1)$ and $\boldsymbol{\phi}_2(\boldsymbol{F}_2)$ DURING SWITCHING TIME

Having computed F_1 , ϕ_1 , F_2 , and ϕ_2 vs. t, we are able to determine the variations of ϕ_1 vs. F_1 and ϕ_2 vs. F_2 during the switching time by treating t as a parameter. These variations were machine plotted for the cases of V=27 volts and V=8.6 volts, and are shown superimposed on manually plotted static $\phi(F)$ curves in Fig. 23.

It can be seen in Fig. 23 that the flux switching is complete for V=27 volts, but for V=8.6 volts, the flux switching is only partial. Based on the criterion that the lower boundary of V, V_{\min} , is determined by $\Delta \phi_{2I} = \phi_r$ (cf. Sec. II-B-1-b), it can be seen that V=8.6 volts is close to V_{\min} . By repeating the computation with other values of V it was found that $V_{\min}=7.1$ volts. This value agrees with experimental observations.

C. METHODS OF COMPUTATION

The results of computation using the Runge-Kutta and the Adams methods of solution were practically identical with the results obtained by using the simple method of computation. Hence, the results of either method may be trusted to be essentially the true solutions, i.e., the computational errors are negligible.

Although library computer PROCEDUREs are available for both the Runge-Kutta and the Adams methods of solution, the application of these PROCEDUREs is not easier (and may even be harder) than writing the whole computer program from scratch and using the simple predictor-corrector method. This is so because most of the computation steps using the simple method, which revolves around the transcendental solution of i_d and i_s , as well as the differential equations, must be provided in the F(X, Y, DX) PROCEDURE. In addition, for the same specified accuracy, the computation time (including compiling time) using the simple method is much shorter (approximately by a factor of 4) than the one using the Runge-Kutta and the Adams methods.

Since the results of the two methods of computation are essentially the same, and since the simple method requires much less computer time for the same accuracy, we conclude that, for problems of this type, the simple predictor-corrector method of solution is preferred. We expect this to be true for even more complicated magnetic circuit problems.

FIG. 23 VARIATIONS OF ϕ_1 vs. F_1 AND ϕ_2 vs. F_2 DURING MODE I OF A CORE-DIODE-TRANSISTOR BINARY COUNTER

SUMMARY 7.

The operation of a core-diode-transistor binary counter is described by dividing a two-count period into four modes of operation; ing which both cores switch simultaneously relatively fast; and Modes II, III, and IV, during which one core at a time switches relatively slowly. A computational analysis of Mode I is provided for evaluating five time variables $(\phi_1,\;\phi_2,\;i_{\rm L},\;i_{\rm s},\;{\rm and}\;i_{\rm d})$ by solving five implicit equations, three of which are differential. The computation involves Newton's method for the transcendental solution of \boldsymbol{i}_s and \boldsymbol{i}_d , in addition to a predictorcorrector method for the solution of a set of differential equations. Two methods of solution are applied, a simple one and the Runge-Kutta and Adams method. The results are practically identical, and the agreement with experimental data is satisfactory. The minimum supply voltage is computed, and its value is in agreement with experimental observation.

FLUX DIVISION IN A LOADED SATURABLE CORE C.

INTRODUCTION

The problem of flux division in a multipath core was described in Report 2 (pp. 24-48; 83-95). Calculation of flux division in a loaded saturable three-leg core, which is initially in a CLEAR state, was carried out. The calculation was based on the simple switching model $\dot{\phi}=\dot{\phi}_p[1-(\phi/\phi_s)^2]$, which is valid only if F is large enough to switch ϕ from ϕ = $-\phi_r$ to ϕ = $+\phi_s$. Despite the simplicity of this model (relative to the more exact models we now employ), the calculation involved a large amount of algebraic manipulations and, except for very high drive current, instantaneous values of F had to be approximated by time-averaged values of F. The agreement with experimental data for low drive-current amplitude was not satisfactory because of the limitations of the model. In addition, it was found later 12 that the experimental data, which had been recorded at a temperature of $29\pm2\,^{\circ}\text{C}$, was very sensitive to temperature, and as a result had to be recorded again at a temperature that was tightly controlled at $29\pm0.5^{\circ}$ C.

Our objective now is to improve the computation of flux division described in Report 2 by overcoming most of the above-mentioned drawbacks. Specifically, we shall employ our latest switching models for $\dot{\phi}_{\rm m\,a}$ and $\dot{\phi}_{i}$, we shall avoid the struggle against a complex algebra by resorting to a numerical solution of the basic equations, we shall compute instantaneous (rather than average) values of the time variables, and we shall compare the results with the more reliable experimental data 12 (taken at $29\,\pm\,0.5\,^{\circ}\text{C}$).

2. EXPERIMENT

The core geometry, the circuit, and the drive current involved in the flux-division experiment were given in Fig. 10 of Report 2. For the convenience of the reader, this figure is reproduced in Fig. 24. A three-leg saturable ferrite core, whose main leg (Leg m) has twice the flux capacity of each of the other legs (Legs 3 and 4), is initially in a CLEAR state, i.e., $\phi_{\rm m} = -2\phi_{\rm r}$ and $\phi_{\rm 3} = \phi_{\rm 4} = -\phi_{\rm r}$. With Leg 4 loaded by a resistance R_L across N_L turns, a SET drive mmf of constant amplitude, NI, is applied to Leg m, and its duration, T, is adjusted so that $\Delta\phi_{\rm m} = 2\phi_{\rm r}$.

We wish to compute the variations of F(t), $\dot{\phi}(t)$, and $\phi(t)$ in each leg during the switching time and then compute the flux division ratio, $D = \Delta\phi_3/\Delta\phi_4$, for various magnitudes of drive current, load, and leg-length ratio, l_4/l_3 .

FIG. 24 FLUX DIVISION IN A LOADED SATURABLE THREE-LEG CORE

3. COMPUTATIONAL ANALYSIS

a. BASIC EQUATIONS

Because inelastic flux division is of interest, we shall neglect the elastic component of $\dot{\phi}$, $\dot{\phi}_{\epsilon}$. However, since NI may be relatively low, we have to distinguish between $\dot{\phi}_i$, Eq. (5), and $\dot{\phi}_{ma}$, Eqs. (18), (19), and (21). Only if NI is large enough to switch all legs relatively fast can we combine $\dot{\phi}_i$ and $\dot{\phi}_{ma}$ into $\dot{\phi}$ expressed by Eqs. (18) through (20). Designating $\dot{\phi}_{ma}$, $\dot{\phi}_i$, $\dot{\phi}$, ϕ , F, and T_i of Leg m, Leg 3, and Leg 4 by Subscripts m, 3, and 4, respectively, three differential equations are written formally as follows:

$$\dot{\phi}_{m} = \dot{\phi}_{m,n,m}(F_{m},\phi_{m}) + \dot{\phi}_{i,m}(F_{m},t,T_{i,m}), \tag{76}$$

$$\dot{\phi}_{3} = \dot{\phi}_{\pi,\alpha,3}(F_{3},\phi_{3}) + \dot{\phi}_{i,3}(F_{3},t,T_{i,3}), \tag{77}$$

and

$$\dot{\phi}_{4} = \dot{\phi}_{\pi,a,4}(F_{4},\phi_{4}) + \dot{\phi}_{i,4}(F_{4},t,T_{i,4}) \qquad (78)$$

By inspection of Fig. (24),

$$F_3 = F_4 + (N_L^2/R_L)\dot{\phi}_4, \tag{79}$$

$$F_{\perp} = NI - F_{3}, \tag{80}$$

and

$$\dot{\phi}_{m} = \dot{\phi}_{3} + \dot{\phi}_{4} \qquad . \tag{81}$$

Equations (76) through (81) contain six dependent variables: $\phi_{\rm m}$, $\phi_{\rm 3}$, $\phi_{\rm 4}$, $F_{\rm m}$, $F_{\rm 3}$, and $F_{\rm 4}$. We now wish to solve for these variables numerically.

b. METHOD OF COMPUTATION

For a given value of t, the values of T_{im} , T_{i3} , and T_{i4} are known, and $\mathring{\phi}_4$, Eq. (78), is a function of F_4 and φ_4 . Therefore, following Eqs. (79) and (80), F_3 and F_m are also functions of F_4 and φ_4 . When the latter are substituted into Eqs. (76) and (77), we obtain a set of three differential equations of the form

$$\dot{\phi}_{\mathbf{m}} = f_{\mathbf{m}}(F_4, \phi_4, \phi_{\mathbf{m}}), \tag{82}$$

$$\dot{\phi}_{3} = f_{3}(F_{4}, \phi_{4}, \phi_{3}), \tag{83}$$

and

$$\dot{\phi}_4 = f_4(F_4, \phi_4) \qquad . \tag{84}$$

Any of the conventional methods of solution of $\phi_{\rm m}$, ϕ_3 , and ϕ_4 must be supplemented by the transcendental solution of F_4 , which is based on substitution of Eqs. (82) through (84) into Eq. (81). Thus, we are looking for the root F_4 of the equation

$$f = \dot{\phi}_3 + \dot{\phi}_4 - \dot{\phi}_{\kappa} = 0 . (85)$$

Following Eqs. (79) and (80),

$$-\frac{\partial F_{\bullet}}{\partial F_{\bullet}} = \frac{\partial F_{3}}{\partial F_{\bullet}} = 1 + \frac{N_{L}^{2}}{R_{L}} \phi_{\bullet}' \qquad (86)$$

Differentiation of Eq. (85) with respect to $\boldsymbol{F_4}$, and substitution of Eq. (86) give

$$\frac{\partial f}{\partial F_4} = f' = (\dot{\phi}'_m + \dot{\phi}'_3) \left(1 + \frac{N_L^2}{R_L} \dot{\phi}'_4 \right) + \dot{\phi}'_4 \qquad (87)$$

Following Newton's method, the iterative correction for F_4 is -f/f'. However, if the sign of this correction alternates, the correction will be only -0.5f/f'.

C. SWITCHING PARAMETERS

The switching parameters of the three legs differ from each other because of differences in leg dimensions (width and length). These parameters are evaluated using the following material parameters (cf. pp. 37-41 of Report 2, and Sec. I-B-2-e in this report): B_r , B_s , H_a , H_q , H_n , H_0 , ν , κ , H_0 , H_B , ζ_p , ν_i , κ_i , M_i , and H_0 .

In analogy to Eqs. (24) and (25) of Report 3 (pp. 17-18), the continuity of \dot{B}_p vs. H (cf. Fig. 15 in Report 2) at H = H_B requires the following relationships:

$$H_B = \frac{\nu H_0 - H_0''}{\nu - 1} \tag{88}$$

and

$$\zeta_p = \kappa \nu (H_B - H_0'')^{\nu - 1}$$
 (89)

Following Eqs. (88), (89), (91), and (92) of Report 2 (pp. 39-40), Eqs. (26) through (29) of Report 3 (pp. 18-19) and Eqs. (14) through (16) of this report, the switching parameters of a leg are expressed by the following functions of material parameters and leg dimensions $[l_i, l_o, l = (l_i + l_o)/2, \text{ and } A = hw]: \phi_r = AB_r; \phi_s = AB_s; F_0'' = lH_0''; F_B = lH_B; F_0 = lH_0; \rho_p = \zeta_p A/l; \lambda = \kappa A/(l^\nu); F_{12} = H_q l_i; F_{23} = H_q l_o; V_1 = (\phi_s - \phi_r)/[H_a(l_o - l_i)]; V_2 = (\phi_s + \phi_r) H_q/[H_n(l_o - l_i)]; \lambda_i = \kappa_i A/(l^\nu); C_i = M_i l; \text{ and } F_{0i} = H_{0i} l_i.$ These expressions are used to compute the switching parameters of Leg m, Leg 3, and Leg 4.

d. ESTIMATION OF $au_{_{\mathrm{S}}}$ FOR DETERMINATION OF rianlge t

In most of the magnetic circuit computer programs described so far, we have determined Δt as a given fraction of an estimated switching time, τ_s , e.g., $\Delta t = \tau_s/200$. The value of τ_s was calculated roughly using basically the relation $2\phi_r = \int_0^{\tau_s} \bar{\rho} F_{e_x} dt$, where $\bar{\rho} \cong 0.6\rho_p$ is the average value of ρ , and $F_{e_x} = F - F_0''$ (actually, $F_{e_x} = F - F_0$, but in order to obtain a positive value of τ_s if $F_0'' < F < F_0$, F_0 was replaced by F_0''). See, for example, Eqs. (46), (47), and (90) in Report 3(pp. 26 and 63), and Eqs. (72) and (73) in this report. As long as F is not close to F_0'' , such an estimation of τ_s , crude as it is, is accepted because the length of Δt is not crucial. However, if F is close to F_0'' , the resulting Δt becomes much too short because $\rho_p (F - F_0'') >> \dot{\phi}_p$. In order to get a closer estimate for τ_s , the relation $\dot{\phi}_p = \lambda (F - F_0'')^\nu$ should be used instead of $\dot{\phi}_p = \rho_p (F - F_0'')$. Hence,

$$\tau_s \simeq \frac{\phi_r}{0.3\lambda (F - F_0'')^{\nu}} \qquad (90)$$

Equation (90) should be used if $F_0'' \leq F \leq F_B$, but may also be used if F is not much larger than F_B .

Suppose that Leg 4 is so long that $\dot{\phi}_{\bf m}=\dot{\phi}_3$. In this case, the switching path is composed of Legs m and 3 in series. If NI is not much larger than $F_{0{\bf m}}^{"}+F_{03}^{"}$, then $H_{\bf m}$ or H_3 is not much larger than $H_0^{"}$, and the difference between $H_{\bf m}$ and H_3 (cf. Report 2, Fig. 16, p. 43) may be neglected. Under this condition, the relation $\dot{\phi}=\dot{\phi}_{\bf m}=\dot{\phi}_3$ leads to an approximate expression for λ of Legs m and 3 in series:

$$\lambda = \frac{1}{\left(\frac{1}{\lambda_{\perp}^{1/\nu}} + \frac{1}{\lambda_{3}^{1/\nu}}\right)^{\nu}} \qquad (91)$$

Substitutions of Eq. (91), $F = F_m + F_3 = NI$, and $\phi_r = \phi_{rm}/2$ into Eq. (90) give

$$\tau_{s} \cong \frac{\phi_{ra}}{0.6} \left(\frac{\frac{1}{\lambda_{a}^{1/\nu}} + \frac{1}{\lambda_{3}^{1/\nu}}}{NI - F_{0a}'' - F_{03}''} \right)^{\nu}. \tag{92}$$

e. DRIVE CURRENT

In view of the fact that the drive current has a finite rise time, T_{r} , we shall replace NI in Eq. (80) by Ni, where

$$Ni = \begin{cases} \frac{NI}{2} \left(1 - \cos \pi \frac{t}{T_r} \right) & \text{if } t < T_r \\ NI & \text{if } t \ge T_r \end{cases}$$
 (93)

4. COMPUTER PROGRAM

a. \$\phi\$ PROCEDUREs

The switching parameters of the three legs are different (because of the difference in dimensions). Hence, six separate PROCEDUREs are needed in order to compute $\dot{\phi}_i$ and $\dot{\phi}_{aa}$ of each leg. In order to save program writing, DEFINE declarations¹³ are made only once for the steps involved in the $\dot{\phi}_i(F,t,T_i)$ PROCEDURE, Appendix B, and the $\dot{\phi}_{aa}(F,\phi,\phi_d,\dot{\phi}')$ PROCEDURE, Appendix C. Each of these declarations is used in a corresponding $\dot{\phi}$ PROCEDURE of a given leg after its identifiers have been identified

(by using DEFINE declarations) with the corresponding identifiers of the given leg. For example, the $\dot{\phi}_{i\,m}(F_{m},t,T_{i\,m})$ PROCEDURE is generated by identifying F_{m} with F, ϕ_{m} with ϕ , etc., and by calling the identifier of the DEFINE declaration in which the steps involved in the $\dot{\phi}_{i}(F,t,T_{i})$ PROCEDURE are included [alternatively, we may call the $\dot{\phi}_{i}(F,t,T_{i})$ PROCEDURE itself, but this results in a longer running time of the computer].

There are other ways to achieve the same goal. For example, the switching parameters may be declared as formal input parameters of the $\dot{\phi}$ PROCEDURE (in addition to the existing ones). If the $\dot{\phi}$ PROCEDURE of each leg is called (in the main program) more than twice, say, this alternative is too lengthy. Another alternative is to fill three arrays, one for each leg, with the switching parameters, and to replace each switching parameter in the declaration of the $\dot{\phi}$ PROCEDURE by the corresponding address in the array. The main drawback of this alternative is that it is hard to associate by inspection a given array address with the name of the corresponding switching parameter.

b. MULTIPLE OUTPUT

Three types of output may be needed from the computer program of flux division:

- (1) Flux switching in each leg vs. time for given values of N_L^2/R_L , l_4/l_3 , and NI;
- (2) D vs. NI, with N_L^2/R_L as a parameter, for a given value of l_4/l_3 ; and
- (3) D vs. l_4/l_3 , with N_L^2/R_L as a parameter, for a given value of NI.

Which of these output types is to be executed depends on the value $1,\ 2,$ or 3 assigned to an identifier SW in the program.

C. PROGRAM OUTLINE

The computer program for flux division is given in Appendix I, using the language ALGOL-60. The program outline is as follows.

 Declare all identifiers (material parameters, leg dimensions, switching parameters, circuit parameters, variables, and miscellaneous), output lists and formats.

- (2) Declare the definitions of ϕ_i (Appendix B) and ϕ_{ma} (Appendix C). Declare the following PROCEDUREs: ϕ_{im} , ϕ_{mam} , ϕ_{i3} , ϕ_{ma3} , ϕ_{i4} , ϕ_{ma4} , and tanh (X_1) . Define "mm" as 10^{-3} (in order to maintain MKS units while writing leg dimensions in mm).
- (3) Set SW to 1, 2, or 3, depending on the type of output required.
- (4) Set the values of the material parameters.
- (5) Set and compute the dimensions and switching parameters of Legs m and 3. Set and compute w_4 , A_4 , ϕ_{r4} , and ϕ_{s4} .
- (6) If SW = 3, print heading for type-3 output.
- (7) For each of several values of $S = l_4/l_3$, do the following:
 - (A) Complete computation of the dimensions and switching parameters of Leg 4.
 - (B) If SW = 2, print heading for type-2 output.
 - (C) Set the value of the rise time, T_r, of the drive current.
 - (D) For each of several values of N_L^2/R_L , do the following:
 - For each of several values of NI, do the following:
 - (i) If SW = 1, print heading for type-1
 output.
 - (ii) Set the initial conditions (t=0; $\phi_{\bf m}=-\phi_{r\,\bf m}; \,\phi_3=-\phi_{{\bf t}\,3}; \,\phi_4=-\phi_{r\,\bf 4}; \, F_{\bf m}=F_3=F_4=0; \,\phi_{\bf m}=\dot{\phi}_3=\dot{\phi}_4=0$).
 - (iii) Compute τ_s , using Eq. (92). Set $\Delta t = \tau_s/200$.
 - (iv) For each Δt during switching time, do the following
 - (a) Compute $t = t_{(-1)} + \Delta t$. Compute Ni, using Eq. (93).
 - (b) Lower the Δt index of previously computed $\phi_{\bf m}$, $\dot{\phi}_{\bf m}$, $\phi_{\bf 3}$, $\dot{\phi}_{\bf 3}$, $\phi_{\bf 4}$, $\dot{\phi}_{\bf 4}$, and $F_{\bf 4}$.

- (c) Use the relation $y = 2y_{(-1)} y_{(-2)}$ to predict a first approximation for $y = \phi_m$, ϕ_3 , ϕ_4 , and F_4
- (d) Until a specified convergence condition is achieved, compute the following steps in a loop; for each leg, use the relation $F_i = F_{0i}$ tanh (F/F_{0i}) , Eq. (17), call the corresponding $\dot{\phi}_{\mathbf{a}a}$ and $\dot{\phi}_i$ PROCEDUREs, and correct ϕ according to $\phi = \phi_{(-1)} + \Delta t [\dot{\phi} + \dot{\phi}_{(-1)}]/2$, Eq. (31):

$$\begin{split} F_4(\text{previous } F_4 & \text{plus } \delta F_4); \ F_{i\,4}; \\ \dot{\phi}_4 & = \dot{\phi}_{m\,a\,4} + \dot{\phi}_{i\,4}; \ F_3[\text{Eq. } (79)]; \ F_{i\,3}; \\ \dot{\phi}_3 & = \dot{\phi}_{m\,a\,3} + \dot{\phi}_{i\,3}; \ \phi_3; \ F_m[\text{Eq. } (80)]; \\ F_{i\,m}; \ \dot{\phi}_m & = \dot{\phi}_{m\,a\,m} + \dot{\phi}_{i\,m}; \ \phi_m; \ f[\text{Eq. } (85)]; \\ \dot{\phi}'_m & = \dot{\phi}'_{m\,a\,m} + \dot{\phi}'_{i\,m}; \ \dot{\phi}'_3 & = \dot{\phi}'_{n\,a\,3} + \dot{\phi}'_{i\,3}; \\ \dot{\phi}'_4 & = \dot{\phi}'_{m\,a\,4} + \dot{\phi}'_{i\,4}; \ f'[\text{Eq. } (87)]; \\ \delta F_4 & = -f/f'(\text{if } \delta F_4 \text{ changes sign,} \\ \delta F_4 & = -0.5 \ f/f'). \ \text{Repeat the above} \\ \text{steps if } |f| & > 0.0001 \ \phi_{r\,m}/\tau_s, \ \text{but no} \\ \text{more than 19 times. Count the number} \\ \text{of times this convergence condition} \\ \text{fails to be satisfied.} \end{split}$$

- (v) If SW = 1, print type-1 output $(t, \dot{\phi}_m, \phi_m, F_m, \dot{\phi}_3, \phi_3, F_3, \dot{\phi}_4, \phi_4, F_4, Ni,$ number of iterations) once, say, every fifth Δt .
- (vi) If $\phi_{\rm m} > -0.99~\phi_{\rm rm}$, terminate switching when either $\phi_{\rm m} \geq 0$ or $\phi_{\rm m} \leq 0.0001~{\rm volt/turm.}$
- Compute the net flux changes during the switching time: $\Delta\phi_3=\phi_3+\phi_{r3}$ and $\Delta\phi_4=\phi_4+\phi_{r4}$.
- (viii) Compute flux-division ratio, $D = \Delta \phi_3 / \Delta \phi_4$.
 - (ix) If SW = 2, store the value of D in a one-dimensional array (at a location corresponding to the value of NI). If SW = 3, store the value of D in a

two-dimensional array (at a location corresponding to the values of N_L^2/R_L and l_4/l_3).

- 2. If SW = 2, print type-2 output $(N_L^2/R_L, D \ vs. \ NI)$, and the cumulative number of convergence failures. If SW = 3, store the values of N_L^2/R_L and the cumulative number of convergence failures in the above two-dimensional array.
- (E) If SW = 3, print type-3 output (for each value of N_L^2/R_L , D vs. l_4/l_3 and the cumulative number of convergence failures).

5. EXPERIMENTAL VERIFICATION

a. CORE

The saturable core used in the flux-division experiment was referred to as Core S in Report 2 (Fig. 22, p. 62). The core was cut ultrasonically from a 1/2-inch-diameter ferrite disk whose material is the same as that of Core E-6: Telemeter Magnetics, T-5, of nominal composition $[Mg_{0.32}Zn_{0.1}Mn_{0.58}]^{++}[Mn_{0.26}Fe_{0.74}]_{2}^{+++}0_{4}$. The material parameters of Core S at $T=29^{\circ}$ C are given as follows: $B_r=0.23 \ wb/m^2$; $B_s=0.2484 \ wb/m^2$; $H_a=310 \ amp-turns/m$; $H_q=35.0 \ amp-turns/m$; $H_n=30.0 \ amp-turns/m$; $H_0=40.0 \ amp-turns/m$; $\nu=1.30$; $\kappa=3400 \ ohms/turn^{2.3} \ amp^{0.3}m^{0.7}$; $H_0=61.0 \ amp-turns/m$; $H_B=131.0 \ amp-turns/m$ [Eq. (88)]; $\zeta_p=17,105 \ ohms/turn^2m$ [Eq. (89)]; $\nu_i=1.3$; $\kappa_i=592 \ ohms/turn^{2.3} \ amp^{0.3}m^{0.7}$; $M_i=10.7 \ amp-turns-\mu sec/m$; and $H_{0.i}=24.8 \ amp-turns/m$. The dimensions and computed switching parameters of each leg are given in Table I.

b. CIRCUIT DRIVE

Four values of N_L^2/R_L (in turns 2 /ohm) were tested in the experiment (Fig. 24): 0 (no load), 1.000 (N_L = 1; R_L = 1.00 ohm), 3.962 (N_L = 2; R_L = 1.01 ohm), and 9.524 (N_L = 2; R_L = 0.42 ohm). The temperature was kept at 29 \pm 0.5°C. The drive-current rise time was near 0.08 μ sec and the mmf amplitude NI was varied between 1.1 amp-turn and 4.0 amp-turns.

 $\label{eq:Table I} \mbox{LEG DIMENSIONS AND SWITCHING PARAMETERS OF CORE S}$

LEG	LEG m	LEG 3	LEG 4
Dimensions			
h (mm)	1.31	1.31	1.31
l _i (mm)	14.363	4.310	7.887
l _o (mm)	19.151	5.108	9.348
l (mm)	16.757	4.709	8.617
w (mm)	1.016	0.508	0.508
A (mm ²)	1.33	0.665	0.665
Switching parameters $\phi_{_{T}}$ (maxwells)	30.612	15.306	15.306
ϕ_r (maxwells)	33.061	16.531	16.531
$\lambda \text{ (ohms/turn}^{2 \cdot 3} \text{amp}^{1 \cdot 3}$	0.921	2.398	1.093
F_0'' (amp-turn)	0.670	0.188	0.345
ρ_p (ohms/turn ²)	1.359	2.417	1.321
F ₀ (amp-turn)	1.022	0.287	0.526
F _B (amp-turns)	2.195	0.617	1.129
$\lambda_i \text{ (ohm/turn}^{2 \cdot 3} \text{amp}^{1 \cdot 3})$	0.160	0.417	0.190
C_i (amp-turn- μ sec)	0.179	0.050	0.092
F _{0;} (amp-turn)	0.356	0.107	0.196

c. EXPERIMENTAL AND COMPUTED $\mathring{\phi}_{(|t|)}$ WAVEFORMS

A comparison is made in Fig. 25 between experimental and computed waveforms of $\dot{\phi}_{\rm m}(t)$, $\dot{\phi}_3(t)$, and $\dot{\phi}_4(t)$ for $N_L^2/R_L=0$ and NI=2.0 amp-turns. The computation was performed on a Burroughs B-5500 computer. The computed waveforms were drawn manually, using type-1 output results. The ringing in the $\dot{\phi}(t)$ oscillograms was caused by the ringing in the drive MMF Ni(t), which is also shown in Fig. 25.

FIG. 25 EXPERIMENTAL (SOLID LINE) AND COMPUTED (DOTTED LINE) Ni(t) AND $\dot{\phi}$ (t) WAVEFORMS OF CORE S (l_4/l_3 = 1.83), DRIVEN UNLOADED BY MMF NI OF 2.0 AMP-TURNS IN A FLUX-DIVISION EXPERIMENT

Time scale = 0.2 μ sec/major div.; Ni scale = 1.0 amp-turn/major div.; $\phi_{\rm m}$ scale = 0.2 volt/turn/major div.; $\phi_{\rm 3}$ scale = 0.25 volt/turn/major div.; $\phi_{\rm 4}$ scale = 0.05 volt/turn/major div.

d. MEASURED AND COMPUTED D $_{
u s.}$ NI WITH $_{N_L^2/R_L}$ AS A PARAMETER

A comparison is made in Fig. 26 between measured and computed D vs. NI for $N_L^2/R_L=0$, 1.000, 3.962, and 9.524 turns 2 /ohm. The computed curves were drawn manually, using type-2 output results.

e. COMPUTED D $_{v\,s}$. $l_{\,4}/l_{\,3}$ WITH $_{N}^{\,2}/R_{L}$ AS A PARAMETER

Computed curves of D vs. l_4/l_3 are shown in Fig. 27 for four values of N_L^2/R_L (0,5,10, and 25 turn 2 /ohm) and two values of NI (10 and 100 amp-turns). The core is assumed to be identical with Core S, except for the length of Leg 4. The plots were drawn manually, using type-3 output results.

FIG. 26 MEASURED AND COMPUTED FLUX-DIVISION RATIO vs. MMF WITH LOAD AS A PARAMETER FOR CORE S $(l_4/l_3\,$ = 1.83)

FIG. 27 COMPUTED PLOTS OF FLUX-DIVISION RATIO vs. LEG-LENGTH RATIO WITH LOAD AS A PARAMETER AND NI OF 10 AND 100 AMP-TURNS FOR A CORE IDENTICAL WITH CORE S EXCEPT FOR THE LENGTH OF LEG 4

6. Discussion

$a. \dot{\phi}(t)$ WAVEFORMS

The agreement between experimental and computed $\dot{\phi}_{\rm m}(t)$, $\dot{\phi}_{3}(t)$, and $\dot{\phi}_{4}(t)$ in Fig. 25 is very satisfactory. The slight disagreement may be attributed to the difference between the actual waveform of the drive current and the assumed function for i(t). The experimental initial $\dot{\phi}$ spikes are higher than the computed ones. This may be attributed to the omission of the $\dot{\phi}_{\epsilon}$ component from the computation.

The frequency of ringing in the Ni(t) is the same as in the $\dot{\phi}(t)$ of each leg. We thus conclude that the $\dot{\phi}(t)$ ringing is not pickup but actual variations in $\dot{\phi}(t)$. Elimination of the drive-current ringing would probably result in elimination of the $\dot{\phi}(t)$ ringing.

b. D vs. NI WITH N_L^2/R_L AS A PARAMETER

The agreement between experimental and computed D vs. NI for the different loads in Fig. 26 is much better than the agreement in Report 2 (Fig. 36, p. 88) in the entire range of NI, and is better than the agreement in Ref. 12 for low values of NI.* Let us distinguish between two regions of NI: NI between 1.1 and 2.1 amp-turns, and NI above 2.1 amp-turns.

In the region of high NI, the agreement is better than in Report 2, but about the same as in Ref. 12. This may be attributed to two factors. First, the validity of the experimental data in Report 2 is in doubt because the temperature was not regulated tightly enough $(29 \pm 2^{\circ}\text{C compared with } 29 \pm 0.5^{\circ}\text{C in Ref. } 12)$. Second, the switching model used in Report 2 and Ref. 12, $\dot{\phi} = \dot{\phi}_p \left[1 - (\phi/\phi_s)^2\right]$, is valid only for high F values. This can be seen by letting $\phi_d = \phi_s$ in $\eta(\phi)$ of Eq. (20) (which may be used to compute $\dot{\phi}_i + \dot{\phi}_{ma}$ if F is high enough).

Consider now the region of low NI. Although there is room for further improvement in the agreement between computed and experimental results in Fig. 26, it should be noted that both reach peak at NI in the neighborhood of 1.3 amp-turns. In contrast, in Report 2 and Ref. 12,

^{*} For the same values of N_L^2/R_L , the computed D vs. NI curves in Report 2 and Ref. 12 are identical, but the experimental curves are different due to difference in temperature tolerances.

computed D approaches infinity, and the actual behavior could be explained only qualitatively. Infinite D resulted from the use of the model $\dot{\phi}=\dot{\phi}_p\left[1-(\phi/\phi_s)^2\right]$, which is invalid because the flux switching is incomplete. When this model was later replaced by the model $\dot{\phi}=\dot{\phi}_p\left\{1-\left[(2\phi+\phi_s-\phi_d)/(\phi_s+\phi_d)\right]^2\right\}$, Eqs. (18) through (20), peaking D vs. NI curves, similar to the ones in Fig. 26 but of higher values, were obtained. The separation between $\dot{\phi}_{na}$ and $\dot{\phi}_i$ done here has resulted in a still better agreement (lower peaks). A still further improvement would probably result if the slow-switching component of $\dot{\phi}_i$ were added, because $\dot{\phi}_i$ has an effect of increasing $\Delta\phi_4$ and thus decreasing D.

It should be emphasized that examining the validity of a switching model by comparing experimental and computed D is a very severe test if D is high (in which case $\Delta \phi_4$ is small). A slight error in $\Delta \phi_4$, which is negligible in the absolute sense, will have a large effect on D. [On the other hand, in general, comparing $\Delta \phi$ is a less severe test than comparing $\mathring{\phi}(t)$].

c. D vs. l_4/l_3 WITH N_L^2/R_L AND NI AS PARAMETERS

Let us examine the computed plots of D vs. l_4/l_3 in Fig. 27. For each load case, the plots corresponding to NI of 10 amp-turns and of 100 amp-turns intersect. The values of l_4/l_3 corresponding to the intersection points increase from 1 to 2 as N_L^2/R_L increases from zero to 25. This phenomenon is quite complex and may be explained qualitatively by examining two cases of l_4/l_3 values, a large one (e.g.,5) and a small one (e.g.,1). Since both Leg 3 and Leg 4 switch during the same switching time T (cf. Fig. 24), the higher the ratio $\phi_{p\,3}/\phi_{p\,4}$ (or $B_{p\,3}/B_{p\,4}$, since $A_3=A_4$) is, the larger is $\Delta\phi_3/\Delta\phi_4=D$.

Consider the case of large l_4/l_3 first. Because $l_4 >> l_3$ and because of the load on Leg 4, $\overline{H}_3 >> \overline{H}_4$ for either NI=10 amp-turns or NI=100 amp-turns, where \overline{H} designates a time average value of H(t). As NI increases from 10 to 100 amp-turns, the ratio B_{p3}/B_{p4} decreases because of the nonlinearity in the B_p vs. H curve (\overline{H} is assumed smaller than H_B ; see Fig. 15, p. 38, in Report 2). Hence, as NI increases, D decreases, which agrees with the results in Fig. 27. Note, however, that the decrease in B_{p3}/B_{p4} is counteracted by the load current which, in comparison with the no-load case, lowers \overline{H}_4 . This explains why, for

a given value of l_4/l_3 in Fig. 27, the percentage decrease in D (as NI increases from 10 amp-turns to 100 amp-turns) is smaller the higher the value of N_L^2/R_L is.

In the case of $l_4/l_3=1$, $\overline{H}_3>\overline{H}_4$ only because of the load on Leg 4. For the same load, therefore, \overline{H}_4 is higher than in the case of a large l_4/l_3 , and may exceed H_B if NI is high enough. Hence, as NI increases from 10 amp-turns to 100 amp-turns, the effect of the nonlinearity of \dot{B}_p vs. H on decreasing D is overcome by the effect of the loading current on increasing D.

We see that, as NI increases, there are two opposing effects on D: an increase in D due to the load current, and a decrease in D due to the nonlinearity of $\dot{B}_p(H)$. If $l_4/l_3=1$, the effect of the load current predominates and D increases with NI. As l_4/l_3 is increased, \overline{H}_4 becomes smaller and the nonlinearity of $\dot{B}_p(H)$ becomes more effective, until beyond a certain value of l_4/l_3 , the latter overcomes the effect of the load current and D decreases with NI.

Extrapolation of the intersection points of the curves corresponding to 10 and 100 amp-turn indicates that for Core S $(l_4/l_3=1.83)$, D decreases as NI increases if $N_L^2/R_L \le 20$. This is in agreement with the plot of D vs. NI in Fig. 26 and the case of $N_L^2/R_L=40$ in Report 2, Fig. 36(b) (p. 88), where D increases as NI increases above 3 amp-turns. Note, however, that the experimental data in Fig. 26 show that D increases with NI for a value of N_L^2/R_L lower than 20.

7. SUMMARY

An analysis is presented for computing flux-division ratio, D, in a saturable core having three legs: Leg m, Leg 3, and Leg 4. Leg m is driven by mmf NI, and Leg 4 is loaded by a resistance R_L across N_L turns. The analysis is based on six equations: two mmf equations, one junction equation $(\Sigma \dot{\phi} = 0)$, and three differential equations $(\dot{\phi} = \dot{\phi}_{ma} + \dot{\phi}_i)$ for each leg). A numerical solution for $\phi(t)$ and F(t) is obtained by incorporating a transcendental solution for F_4 into a simple predictor-corrector method. A computer program is provided for computing three types of output: time variables, D vs. NI and N_L^2/R_L for given l_4/l_3 , and D vs. l_4/l_3 and N_L^2/R_L for given NI. Computed $\dot{\phi}(t)$ waveforms for NI = 2.0 ampturns and D vs. NI for $N_L^2/R_L = 0$, 1.000, 3.962, and 9.524 turns²/ohm are

compared with experimental data from an ultrasonically cut ferrite core (Core S, Report 2). The agreement between computed and experimental results is considerably better than the agreement in Report 2.

D. CONCLUSIONS

The complex nonlinearity of exact flux-switching functions makes it impossible to complete the analysis of magnetic circuits algebraically. Even if these functions are simplified, the amount of mathematical work involved is very often a burden. These two factors dictate the use of numerical methods in order to analyze (and design) magnetic circuits.

Typically, the problem is to solve a set of simultaneous first-order differential equations that include variables that must be solved for transcendentally. For the transcendental solution of these variables, Newton's method (with a slight modification) has been found to be very effective. The set of differential equations may be solved by a number of well-known methods. In the case of the binary counter (which is not a simple circuit), the results obtained by using a simple predictor-corrector method are essentially the same as the results obtained by a more complex and more exact method (Runge-Kutta and Adams); on the other hand, the computation time using the simple method was much shorter. The simple method has also yielded results that agree quite well with experimental data for other types of magnetic circuits (unloaded core, loaded core, core-diode shift register, and a loaded saturable three-leg core). We thus find the simple predictor-corrector method to be accurate enough for the computational analysis of magnetic circuits similar to the ones above and to be relatively inexpensive.

The agreements between computed and experimental waveforms of current and voltage in the circuits analyzed so far are encouraging. Future work along this line includes the following areas:

- (1) Computational analyses (including computer programs and experimental verification) of additional, more complicated magnetic circuits.
- (2) Computer programs for determination of core parameters from experimental data.
- (3) Computer programs for design of magnetic circuits.
- (4) Application of on-line computers in analysis and design of magnetic circuits.

III VARIATIONS OF FLUX-SWITCHING PARAMETERS

A. RAMP-F SWITCHING

1. Introduction

It was noted in Report 3 (pp. 35 and 129) that the peak switching voltage of Core E-6 with a ramp-F drive was considerably lower than that computed from the parabolic model using step-F parameters. An investigation has been carried out to determine the extent of this effect as a function of the slope, k, of the ramp F. This effect is probably closely related to the effects of partial setting discussed in Report 3, but the nature of the relationship is not yet understood.

The $\dot{\phi}(t)$ comparison in Report 3 [Fig. 11(a)] showed that the shape of the $\dot{\phi}(t)$ waveform was accurately given by the model for a given slope of F provided that several parameters were appropriately adjusted. The problem is thus primarily one of determining the values of the switching parameters as a function of k. One additional experimental check of the shape of the $\dot{\phi}(t)$ waveform will be given in Sec. III-A-4.

There are two motives for pursuing this study: (1) to determine if the parabolic model can be used for practical applications where a core is driven by an F(t) which is approximately ramp-shaped, and (2) to learn more about the general effects of nonconstant F(t) switching so that, eventually, a new model can be developed which will work for any F(t).

The investigation was carried out by measuring ϕ_p and t_p for ramp-F switching for a number of values of k (the slope of the ramp). These data were then compared to computed curves to determine if a new, different, set of values of the switching parameters could be used in the model for all values of k.

The experimental $\dot{\phi}_p$ and t_p data were plotted vs. k and compared to curves computed from the parabolic model. Curves were computed in two different ways: (1) using a simple version of the parabolic model and solving for $\dot{\phi}_p$ and t_p algebraically, and (2) using the ϕ_d parabolic model and the digital computer. The algebraic method proved useful as an intuitive aid to understanding the results and also provided an accurate

method for determining ramp-F corrected parameter values without resorting to trial and error. These two methods of computing ϕ_p and t_p will be discussed in Parts A-2 and A-3, respectively. Next, the experimental results of Core E-6 will be briefly discussed. The results of introducing new parameter values into the computations will be discussed in Part A-5. Finally, conclusions will be made in Part A-6. Experimental information for two other cores will be given in Sec. III-B-4 where the effects of temperature are treated.

2. ALGEBRAIC CALCULATION OF $\dot{\phi}_{p}$ AND t_{p}

The values of $\dot{\phi}_p$ and t_p for ramp-F switching cannot be algebraically calculated using the ϕ_d parabolic model. However, they can be algebraically calculated with the following version of the parabolic model:

$$\dot{\phi} = \lambda (F - F_0'')^{\nu} \left(1 - \frac{\phi^2}{\phi_s^2} \right) \qquad (94)$$

Although this model is less accurate than the ϕ_d parabolic model, it is sufficiently accurate to aid intuitively in understanding the phenomenological aspects of ramp-F switching.

It will be assumed for this calculation that the entire $\dot{\phi}_p(F)$ curve can be adequately described with one set of values for λ , F_0'' and ν . This simplifies the calculation considerably and is quite accurate for some cores (e.g., Core E-6) in the range of F over which the experiments were performed. The computer calculation of $\dot{\phi}_p$ and t_p is easily capable of separating the $\dot{\phi}_p(F)$ curve into two regions when it is necessary to do so. The object now is to solve for $\dot{\phi}_p$ and t_p as a function of k (the slope of the applied ramp-F), λ , F_0'' and ν .

The $\dot{\phi}(t)$ function can be obtained from Eq. (94) by separation of variables. Defining t_0 as the time when switching begins, i.e., $\phi = -\phi_r$ at $t = t_0$, and solving for $\dot{\phi}(t)$ results in

$$\dot{\phi} = \lambda (F - F_0'')^{\nu} \operatorname{sech}^2 \left\{ \frac{\lambda}{\phi_s} \int_{t_0}^t (F - F_0'')^{\nu} dt' - \tanh^{-1} \frac{\phi_r}{\phi_s} \right\}$$
 (95)

Substituting the ramp function

$$F = kt \tag{96}$$

into the integral of Eq. (95) and using the relation $t_0 = F_0''/k$ results in

$$\int_{t_0}^{t} (F - F_0'')^{\nu} dt' = \frac{(kt - F_0'')^{\nu+1}}{k(\nu + 1)} . \tag{97}$$

Using this integral in Eq. (95) gives us the desired $\dot{\phi}(t)$ function,

$$\dot{\phi} = \lambda (F - F_0'')^{\nu} \operatorname{sech}^2 \left\{ \frac{\lambda (kt - F_0'')^{\nu+1}}{\phi_s k(\nu + 1)} - \tanh^{-1} \frac{\phi_r}{\phi_s} \right\} , \qquad (98)$$

for ramp-F switching. The solution for t_p is then obtained in the usual way by setting $d\dot{\phi}/dt$ = 0. This gives the following transcendental function:

$$(kt_p - F_0'')^{\nu+1} \tanh \left\{ \frac{\lambda (kt_p - F_0'')^{\nu+1}}{\phi_s k(\nu+1)} - \tanh^{-1} \frac{\phi_r}{\phi_s} \right\} = \frac{\nu k\phi_s}{2\lambda} . \tag{99}$$

It turns out that the argument of the tanh function is usually very small (e.g., < 0.2) so that the approximation

$$tanh x \stackrel{\sim}{=} x \tag{100}$$

can be used to simplify Eq. (99). This results in a quadratic equation which can be solved for kt_p , thus giving

$$kt_{p} = \left\{ \frac{k\phi_{s}(\nu+1)}{2\lambda} \left[C + \sqrt{C^{2} + \frac{2\nu}{\nu+1}} \right] \right\}^{1/(\nu+1)} + F_{0}'' \quad (101)$$

where

$$C = \tanh^{-1} \frac{\phi_r}{\phi_s} \quad .$$

The function for $\dot{\phi}_p$ can be obtained by letting $t=t_p$ and $\dot{\phi}=\dot{\phi}_p$ in Eq. (98), and using kt_p from Eq. (101). We thereby obtain

$$\dot{\phi}_{p} = \lambda \left\{ \frac{k \, \phi_{s}(\nu + 1)}{2 \, \lambda} \left[C + \sqrt{C^{2} + \frac{2 \, \nu}{\nu + 1}} \right] \right\}^{\nu/(\nu + 1)} \operatorname{sech}^{2} \left\{ \frac{1}{2} \left[\sqrt{C^{2} + \frac{2 \, \nu}{\nu + 1}} - C \right] \right\}. \tag{102}$$

Note that F_0'' does not appear in Eq. (102). In Eq. (101) it appears only as an added term. Thus, two cores which have identical parameters and dimensions except for a difference in F_0'' will both give the same values for $\dot{\phi}_p$. However, the peak of the large F_0'' core will occur later by an amount 1/k ($F_{01\text{arge}}'' - F_{0\text{small}}''$). At low values of k this is not precisely true because of the inaccuracies of this model. The F_0'' term in Eq. (101), if divided by k, is equal to the time required for F to reach F_0'' , at which time the core begins switching. The time from the onset of switching until the peaking of $\dot{\phi}$, is independent of F_0'' for this model.

The three parameters of primary interest in Eqs. (101) and (102) are k, λ , and F_0'' . If everything else is combined into the quantities A and B, these equations can be written as

$$kt_{p} - F_{0}'' = A\left(\frac{k}{\lambda}\right)^{1/(\nu+1)}$$
 (103)

and

$$\dot{\phi}_{p} = B \lambda \left(\frac{k}{\lambda}\right)^{\nu/(\nu+1)} \qquad (104)$$

Equations (103) and (104) are plotted as a dashed line in Figs. 28 and 29. These curves will be compared with computer calculated curves in Part A-3. The curve is plotted as kt_p vs. k rather than t_p vs. k to remove the 1/k dependence so that the remaining effects can be more easily judged.

If $(kt_p - F_0'')$ of Eq. (103) is plotted $vs.\ k$ on log-log paper, a straight line results. The slope of this line is equal to $1/(\nu+1)$. Vertical displacement of the line corresponds to changes in λ and the coefficient A which contains ν , ϕ_s , and $\tanh^{-1}\phi_r/\phi_s$. Likewise, Eq. (104) gives a straight line on log-log paper. In this case, the slope is equal to $\nu/(\nu+1)$, and vertical displacement of the line corresponds to changes in λ and the coefficient B which also contains ν , ϕ_s and $\tanh^{-1}\phi_r/\phi_s$.

FIG. 28 $\dot{\phi}_{
m p}({
m k})$ FOR RAMP F(t)

FIG. 29 $kt_p(k)$ FOR RAMP F(t)

The experimental data can be conveniently analyzed on log-log scales because nearly straight lines are obtained. This makes for easier interpolation and simplifies the comparisons with results computed from a model. Equations (103) and (104) will be used in Part A-5 to calculate new values of λ and F_0'' (e.g., λ_r and F_{0r}'') which are applicable specifically for ramp-F switching.

3. Numerical Computation of $\dot{\phi}_p$ and t_p

The ϕ_d parabolic model was used with the digital computer to compute more accurate $\dot{\phi}_p(k)$ and $kt_p(k)$ curves than those obtained via the algebraic calculations just discussed. The $\dot{\phi}(t)$ was computed in the vicinity of the maximum $\dot{\phi}$ (e.g., $-0.3\phi_r < \phi < +0.3\phi_r$) for each of a number of k values. The values of $\dot{\phi}_p$ and kt_p were then determined from the $\dot{\phi}(t)$ data and values plotted vs. k. The computer program, which did not include

any of the initial spike models, is discussed in some detail on pp. 16-21 of Report 3. The equation of this model which corresponds to Eq. (94) is

$$\dot{\phi} = \lambda (F - F_0'')^{\nu} \left\{ 1 - \left(\frac{2\phi + \phi_s - \phi_d}{\phi_s + \phi_d} \right)^2 \right\} \qquad (105)$$

This model requires a function (see p. 19 of Report 3) for $\phi_d(F)$. Equations for this purpose contain parameters (e.g., ϕ_r , ϕ_s , H_q , H_n , and H_a) that must be determined before this model can be used. These parameters are determined from the static $\phi(F)$ curve.

Computation of $\dot{\phi}_p(k)$ and $kt_p(k)$ was made for Core E-6 using the same step-F parameters as were used in the algebraic calculation above; only one region in $\dot{\phi}_p(F)$ was used. The results are plotted as a solid curve in the linear graphs of Figs. 28 and 29 and also on the log-log graphs of Figs. 30 and 31. Only one region in $\dot{\phi}_p(F)$ was also used for Cores I-4

FIG. 30 $\dot{\phi_{\rm p}}({\bf k})$ FOR RAMP F(t) USING $\lambda_{\rm r}$ AND F $_{0\,{
m r}}''$

FIG. 31 $(kt_p - F_0'')$ vs. k FOR RAMP F USING λ_r AND F_0''

and K-1 to be discussed in Part B-4 because the experimental $\dot{\phi}_p(F)$ data for step-F drive could be adequately described with only one region. Two regions can easily be handled by the present computer program if necessary.

A comparison of the $\dot{\phi}_p(k)$ curve in Fig. 30 calculated from Eq. (102) and the curve obtained using the computer reveals several interesting points. The curve from the computer is curved downward for low values of k, whereas the algebraic calculation results in a straight line. This curvature is the result of ϕ_d being a function of F in the ϕ_d parabolic model. The computer calculated curves were consistently lower for all

values of k, although as k increased, the percentage difference decreased. For Core E-6 at k = 10, the difference is 4.3 percent; at k = 100, it is 1.2 percent.

4. EXPERIMENT

The equipment used for the ramp-F experiments was essentially the same as that described in Sec. I-D-1. The transistor pulser, which consisted of four current drivers in parallel, was modified to increase the maximum rise time to about 50 μ sec. A capacitor decade was inserted in the internal pulse-shaping circuit of each of these four drivers. This also increased the fall time, but that is of little consequence if switching is completed during the rise time.

The pulse sequence consisted of a positive SET pulse followed by a negative CLEAR pulse, a positive CLEAR pulse, and a negative CLEAR pulse (see p. 83 of Report 3 for details of this method of clearing). The negative CLEAR pulses were greater than 7 amp-turns for Cores E-6 and K-1, and 15 amp-turns for Core I-4. The constant portion of the SET pulse was kept short to minimize dissipation in the output transistors of the pulser. A projected graticule was used on the oscilloscope so that parallax could be eliminated from the experiment. Core E-6 was used for most of the ramp-F experiments. Cores I-4 and K-1 were tested with a ramp-F drive at various temperatures (Sec. III-B-4).

The measurement of $\dot{\phi}_p$, t_p and k is illustrated by Fig. 32. First, the peak in $\dot{\phi}$ was aligned with a vertical graticule line. Then, $\dot{\phi}_p$ and F_a were measured with a chopper and a voltage reference. Next, Δt and F_b were measured. The value of k was calculated from

$$k = \frac{F_b - F_a}{\Delta t} \tag{106}$$

and kt_p from

$$kt_p = F_a . (107)$$

For all except the low values of k, the F(t) waveform had a nonlinearity near its beginning. The above method of measurement was used so that k and t_p would be determined from that portion of the ramp which existed during most of the switching prior to the peak in $\dot{\phi}(t)$. The linearity and slope of the ramp after the peak in $\dot{\phi}(t)$ is of no concern since it will not affect the determination of t_p and $\dot{\phi}_p$.

FIG. 32 DEFINITIONS OF MEASURED QUANTITIES FOR RAMP-F SWITCHING

The comparison of the experimental and computed $\dot{\phi}(t)$ waveform was done at a relatively low value of k (k=0.837 amp-turn/ μ sec) to complement rather than duplicate the comparison made in Report 3 (k=3.57 amp-turn/ μ sec). The experimental $\dot{\phi}(t)$ waveform and its corresponding F(t) waveform are shown in Fig. 33. The numerically computed $\dot{\phi}(t)$ waveform is also included so that the shape of the waveforms can be compared. The values of λ_r and F''_{0r} used in the computation were determined from the $\dot{\phi}_p(k)$ and $kt_p(k)$ curves so that $\dot{\phi}_p$ and t_p would match the experimental values at k=0.837. The values were $\lambda_r=0.0507$ and $F''_{0r}=0.800$ amp-turns. Note that once λ_r and F''_{0r} are correctly determined, very good agreement is obtained. The problem is one of determining how well a single set of values for λ_r and F''_{0r} [also ρ_p , F_{Br} , and F_{0r} if two regions are used for $\dot{\phi}_p(F)$] will serve for all values of k.

FIG. 33 EXPERIMENTAL vs. COMPUTED $\dot{\phi}(t)$ FOR RAMP F WITH $\lambda_{\rm r}$ AND F $^{\prime\prime}_{0{\rm r}}$ ADJUSTED TO MAKE $\dot{\phi}_{\rm p}$ AND $t_{\rm p}$ AGREE Core: E-6; Temp. = 30°C; k = 0.837 amp-turn/ μ sec; $\lambda_{\rm r}$ = 0.049; F $^{\prime\prime}_{0{\rm r}}$ = 0.80 amp-turn; ν = 1.30

Experimental $\dot{\phi}_p(k)$ and $kt_p(k)$ points are included in Figs. 28 through 31. Note that the experimental $\dot{\phi}_p(k)$ data are below the numerically calculated curves (for step-F parameters) for all values of k. This is in agreement with the one point observation on p. 35 of Report 3. Thus λ needs to be decreased for all values of k.

Note that the experimental $\dot{\phi}_p(k)$ curve has a shape very similar to the numerically computed curve, *i.e.*, nearly a straight line on the log-log plot but with a slight downward curvature at low values of k. It appears that a vertical shift downward of the numerically computed curve would give good agreement for the entire curve. This vertical shift is obtained by varying λ as indicated by Eq. (104).

Strangely enough, the $kt_p(k)$ experimental and computed curves are in quite good agreement except for low values of $k(e.g., k \le 1)$. This good agreement may be somewhat accidental, since a correction in λ to give agreement in $\dot{\phi}_p(k)$ will throw the $kt_p(k)$ curve out of agreement. Therefore, F_0'' has to be corrected to bring $kt_p(k)$ back into agreement [cf]. Eqs. (103) and (104)]. This will be discussed in more detail in Part A-5.

5. PARAMETER CORRECTIONS

The values of λ and F_0'' need to be corrected to make the computed $\dot{\phi}_p(k)$ and $kt_p(k)$ curves agree with experimental ramp-F data. The corrected values can be calculated on the basis of Eqs. (103) and (104) and from the experimental and the numerically computed data. Define P as

$$P \equiv \frac{\dot{\phi}_{p} \text{ computed [using the } \phi_{d} \text{ parabolic model]}}{\dot{\phi}_{p} \text{ experimental}} \qquad (108)$$

The value of $(\dot{\phi}_p \text{ computed})$ can be computed using step-F parameters, or any approximate values. Both values of $\dot{\phi}_p$ must be at the same value of k. Denote ramp-F corrected values by the subscript r. From the λ relationship of Eq. (104) we obtain

$$\lambda_{r} = \frac{\lambda}{p^{\nu+1}} \tag{109}$$

where λ is the value used in determining ($\dot{\phi}_p$ computed). To derive a corresponding equation for F_{0r}'' first solve Eq. (103) for F_0'' for ramp-F-corrected parameters. This results in

$$F_{0r}'' = kt_{p_{exp}} - A\left(\frac{k}{\lambda_r}\right)^{1/(\nu+1)}$$
(110)

where $t_{p_{e\times p}}$ is the experimental value. A is then also determined from Eq. (103) but using step-F values (or the approximate values) for λ and F_0'' ,

$$A = \left(k t_{p_{\text{calc}}} - F_0''\right) \left(\frac{\lambda}{k}\right)^{1/(\nu+1)}$$
(111)

where $t_{p_{\text{calc}}}$ is the calculated value of t_p . Substituting this equation into Eq. (110) and making use of Eq. (109) results in

$$F''_{0r} = kt_{p_{exp}} - P(kt_{p_{calc}} - F''_{0})$$
 (112)

Equations (109) and (112) were used to get the following ramp-F values for Core E-6 at k = 6 amp-turns/ μ sec:

 $\lambda_r = 0.0507$ $F''_{0r} = 0.56 \text{ amp-turns}$

The numerically computed $\dot{\phi}_p(k)$ and $kt_p(k)$ curves using this value of λ but the old value of F_0'' are included in Figs. 30 and 31. Note that the ${\dot \phi}_{_{m p}}(k)$ is in relatively good agreement for all k values, but that the original agreement of the $kt_{p}(k)$ curve has now been ruined. To correct this, F_0'' must be decreased. The calculation was repeated using both λ_r and F_{0r}'' . The $\dot{\phi}_p(k)$ curve is included in Fig. 30. The $kt_p''(F)$ curve has been plotted in a new figure (Fig. 34) because the vertical axis contains F_0'' . The $\phi_p(k)$ curve has been altered primarily in the low-k region as a result of the change in F_0'' . In this low-k region it has gone from slightly above to slightly below the experimental data. Hence, decreasing $F_0^{\prime\prime}$ increases the curvature of the $\dot{m{\phi}}_{m{p}}(k)$ curve if the $m{\phi}_{m{d}}$ model is used. This slight variation in curvature could be used to determine F_0'' very roughly. However, a value thus determined would be larger than the value 0.56 which is required to make t_p agree at k = 6 amp-turns/ μ sec. The computed $kt_p(k)$ curve (Fig. 34) now crosses the experimental curve at k = 6 where the value of F_{0r}'' was determined. Unfortunately this $kt_p(k)$ curve cannot be made to agree for all k values. If ν is adjusted to make the $kt_{_{p}}(k)$ curves agree for all \emph{k} values, which would require a significant change in ν then the agreement in the $\dot{\phi}_{_p}(k)$ curves would be ruined because of a change in the slope of the computed curve. Thus, adjusting u would not help, but would considerably complicate matters.

So far in this discussion, very little has been said about determining ramp-F values for ρ_p , F_0 , and F_B . In some cores the $\phi_p(F)$ curve may require use of these parameters. It was noted, in preliminary computations, that a small deviation from the experimental $\phi_p(k)$ curves at high k values could be traced to the inclusion of ρ_p , F_0 and F_B in the computer program. A careful examination of the experimental $\phi_p(F)$ data for Core E-6 revealed that the $\phi_p(F)$ curve was better described if ρ_p , F_0 and F_B were not introduced. If the experimental data had been extended to higher F values, perhaps ρ_p , F_0 and F_B would have been necessary to properly describe the $\phi_p(F)$ curve. It was therefore impossible to make experimental observations on the effect of ramp-F switching on ρ_p , F_0 and F_B . It is possible,

FIG. 34 $(kt_p - F_{0r}'')$ vs. k FOR RAMP F USING λ_r AND F_{0r}''

however, to make some reasonable assumptions that will allow a determination of ramp-F values for ρ_p , F_0 and F_B (i.e., ρ_{pr} , F_{0r} , and F_{Br}) from the values of λ_r and F_{0r}'' . First, assume that the effect of ramp-F switching is to reduce the ordinate of the $\dot{\phi}_p(F)$ curve the same percentage for all F values. Then ρ_p will be reduced by the same factor as is λ . Therefore

$$\rho_{pr} = \rho_p \frac{\lambda_r}{\lambda} \quad . \tag{113}$$

Second, assume that the other effect of ramp-F switching is to shift the entire $\dot{\phi}_p(F)$ curve leftward. Then F_0 and F_B will be reduced by the same value as F_0'' . Thus F_{0r} and F_{Br} are given by

$$F_{0r} = F_0 - (F_0'' - F_{0r}'') \tag{114}$$

and

$$F_{Br} = F_B - (F'' - F''_{0r}) . (115)$$

The equations of continuity of the $\dot{\phi}_p(F)$ curve as given on pp. 17 and 18 of Report 3 are preserved by these assumptions. It should be emphasized that Eqs. (113), (114), and (115) have no experimental verification.

The physical mechanisms responsible for the effects of ramp-F switching are not presently understood. They are probably closely related to the effects of partial setting (cf. p. 129 of Report 3). It is not surprising that good agreement cannot be obtained for all values of k by adjusting only λ and F_0'' . See, for example, the effects that partial setting has on t_p as observed in Figs. 34(a) and 35 of Report 3, and also on the static $\phi(F)$ curves as observed in Figs. 30 of Report 3. Similar effects may also occur in ramp-F switching. This needs further investigation.

In practical applications where F(t) can be approximated by a ramp, it is certainly better to make an adjustment in the value of λ and F_0'' rather than ignore the effects of ramp-F switching altogether. If a new value for F_0'' is determined at a value of k in the middle of the range of interest, quite good results should be obtained. The experimental determination of λ_r and F_0'' , can be done with measurements at only a few k values if the results are plotted with log-log scales, since nearly straight lines result.

When only ramp-F values of parameters are needed, the $\dot{\phi}_p(F)$ measurement can be eliminated and λ_r , $F_{0r}^{\prime\prime}$ and ν determined directly from experimental $\dot{\phi}_p(k)$ and $kt_p(k)$ curves. First, a straight line is drawn tangent to the log-log $\dot{\phi}_p(k)$ curve at the high-k end. From the slope of this straight line, ν can be determined according to Eq. (104). Next, λ can be calculated from one point on this straight line by using Eq. (102). Finally, $F_0^{\prime\prime}$ can be determined from an appropriate point of the experimental $kt_p(k)$ data by using Eq. (101). These approximate values of λ and $F_0^{\prime\prime}$ can then be used to compute $\dot{\phi}_p(k)$ and $t_p(k)$ using the ϕ_d parabolic model.

These computed curves, together with Eqs. (109) and (112) can be used to determine final values of λ_r and F_{0r}'' .

6. SUMMARY

The parabolic switching model

$$\dot{\phi} = \lambda (F - F_0'')^{\nu} \left(1 - \frac{\phi^2}{\phi_s^2} \right)$$

was used for ramp-F drive to derive equations for $\dot{\phi}_p(k)$ and $t_p(k)$, where kis the slope of the ramp. It was shown that $\dot{\phi}_p$ is independent of F_0'' for this model. These equations are useful as an intuitive aid for analyzing the experimental results, and in determining corrected values for λ and F_0'' for ramp-F switching. The numerical computation of $\dot{\phi}_p(k)$, and $t_p(k)$ with the ϕ_d parabolic model and a digital computer was discussed and the results compared to those obtained analytically with the simpler form of the parabolic model given above. The values were nearly equal for high values of k (e.g., $\dot{\phi}_p$ values differed by 4.3 percent at k = 10 amp-turn/ μ sec) but differed considerably at low values of k. The details of the experimental measurements were discussed and the $\dot{\phi}_p(k)$ and $t_p(k)$ curves for Core E-6 were compared to the computed curves using step-F parameters. The experimental $\dot{\phi}_{_{p}}(k)$ curve was significantly lower (e.g., 15 percent at k = 1 amp-turn/ μ sec). The experimental $t_p(k)$ curve was in close agreement with the computed curve except for low values of k. The algebraic equations for $\dot{\phi}_p(k)$ and $t_p(k)$ were used to derive simple relationships for computing ramp-F corrected values for λ and F_0'' . These values were used in the ϕ_d parabolic model to again compute $\dot{\phi}_p(k)$ and $t_p(k)$. The $\dot{\phi}_p(k)$ curves were now in good agreement for all k values. The $t_p(k)$ curves were inexact agreement at only one k value, which is the point at which the two curves crossed each other. The agreement in the vicinity of this crossing point was good enough for many practical applications.

B. EFFECTS OF TEMPERATURE

1. INTRODUCTION

In a practical magnetic circuit, operation is influenced by variations in temperature. Analysis of these circuits by use of a switching model therefore requires a knowledge of the variation of the core parameters vs.

temperature. It is also necessary to verify that the model which has been used at room temperature is also valid for a wide temperature range. In addition, it is helpful for qualitative studies of circuit operation to know the general trends and approximate magnitude of the effects of varying temperature.

The effects of temperature variations were determined by measuring the core properties at each of several temperatures from -50°C to +75°C. First, the static $\phi(F)$ curves were measured, starting from both a hard remanent state and a partially set state. Second, the $\dot{\phi}_p(F)$ curve for step-F switching was measured at each temperature. Third, the $\dot{\phi}_p(k)$ and $kt_p(k)$ curves for ramp-F switching were measured at each temperature. The core parameters were determined from these various curves and plotted vs. temperature.

These temperature effects were measured for two cores, Core I-4, and Core K-1. The dimensions of these cores are given in Table II. Core I-4 is a thin ring which was ultrasonically cut from a disc of Indiana General 5209 ferrite. It is the same core used in Report 3 for studying the effects of partial setting. The disc from which Core I-4 was cut was one of a batch of 10 discs which were magnetically tested for uniformity. Core K-1 is a Lockheed 100SCl switch core. It is from a group of six cores which were magnetically tested for uniformity.

The temperature of the core was controlled by a commercial temperature test chamber which used electrical heating and expansion of CO_2 for cooling. The inaccuracy of the temperature is less than $\pm 1.5\,^{\circ}\mathrm{C}$ at all temperatures.

2. STATIC $\phi(F)$

The static $\phi(F)$ curves were measured starting from both a hard remanent state and a partially set state for each temperature. The partially set state was obtained by switching the core from $-\phi_r$ to ϕ = 0 by a 1- μ sec rectangular pulse. The static $\phi(F)$ curve from this partially set state was then measured for both a positive and a negative polarity of F.

The model for the static $\phi(F)$ curves which we have been using (see pp. 3-7 and pp. 74, 75 of Report 2) was fitted to each hard-state experimental static $\phi(F)$ curve. The values of the parameters thereby determined were plotted vs. temperature. However, this $\phi(F)$ model is not applicable for partially set $\phi(F)$ curves. An appropriate model has not yet been

 $\begin{array}{c} \textbf{Table II} \\ \textbf{DIMENSIONS, SWITCHING PARAMETERS, AND TEMPERATURE COEFFICIENTS} \\ \textbf{OF CORES I-4 AND K-1} \end{array}$

	CORE I-4	CORE K-1
	Indiana General 5209 Ultrasonically Cut	Lockheed 100SC1 Commercial
	30 ± 0.5°C	24.6 ± 0.5 °C
DIMENSION		
r ₀ (mm)	3.78	1.27 (50 mils)
r _i (mm)	3.43	0.89 (35 mils)
r_0/r_i	1.10	1.43
h (mm)	0.848	0.76 (30 mils)
w (mm)	0.35	0.38
l (mm)	21.55	5.59
l _o (mm)	23.77	7.98
PARAMETER		
ϕ_{r} (maxwells)	5.97	6.43
ϕ_s (maxwells)	6.55	7.10
H_a (amp-turns/meter)	230.0	260.0
H_{q} (amp-turns/meter)	43.1	37.3
H_n (amp-turns/meter)	37.0	31.4
$\lambda \text{ (ohm/turn}^{\nu+1} \text{amp}^{\nu-1})$	0.134	0.64
F_0'' (amp-turn)	1.28	0.35
ν	1.19	1.21
$\lambda_r (\text{ohm/turn}^{\nu+1} \text{amp}^{\nu-1})$	0.119	0.47?
TEMPERATURE COEFFICIENT		
$a_{\phi r} (1/{}^{\circ}C)$	-0.0030	-0.003o
$a_{\phi s}$ (1/°C)	-0.0025	-0.0035
$\alpha_{Hq} (1/^{\circ}C)$	-0.0077	- 0. 0095
a_{Hn} (1/°C)	-0.0095	-0.0097
α _λ (1/°C)	-0.001	+0.0017
$a_{F_0''}(1/^{\circ}C)$	-0.0084	-0.0065
$a_{\nu}^{r_0}(1/^{\circ}C)$	+0.0008	-0.0002
$a_{\lambda r} (1/^{\circ}C)$	-0.003	+0.001

obtained for partially set states. Therefore, the effects of temperature upon these partially set $\phi(F)$ curves will be judged by looking at the curves themselves.

The pulse sequence consisted of five rectangular pulses: a positive PARTIAL-SET pulse, a positive or negative TEST pulse, a negative CLEAR pulse, a positive CLEAR pulse, and finally another negative CLEAR pulse (see p. 84 of Report 3). The width of the SET pulse was 6 msec. The first CLEAR pulse followed closely the end of the SET pulse. The flux switched by the PARTIAL-SET and the TEST pulses was measured at the time of the first CLEAR pulse by means of a flux reference (see Appendix F of Report 2). The peak flux, not remanent flux, was measured for all the $\phi(F)$ curves of this report. The negative CLEAR pulses were greater than 15 amp-turns for Core I-4 and 7.0 amp-turns for Core K-1 (duration = 10 μ sec).

The general effects of temperature on the hard-state static $\phi(F)$ is shown in Fig. 35 for Core I-4 and Fig. 36 for Core K-1. It was found that the $\phi(F)$ model could be fit quite well for all the temperatures for Core I-4 (e.g., less than 3 percent error except right at the threshold

FIG. 35 STATIC ϕ (F) CURVES vs. TEMPERATURE OF CORE I-4

FIG. 36 STATIC ϕ (F) CURVES vs. TEMPERATURE OF CORE K-1

where the experimental curve has a more rounded corner). The irregularities in the $-50\,^{\circ}\text{C}$ curve for Core I-4 are, of course, smoothed out in the computed curve, but the percentage error due to these irregularities is less than 3 percent. Experimental $\phi_{\epsilon}(F)$ data was not included in these measurements. Therefore, H_a can only be very roughly determined by using the portion of the $\phi(F)$ curves between F = 0 and F = F_{th} . The value of H_a previously determined at room temperature was adequate for all temperatures except $-50\,^{\circ}\mathrm{C}$ for both cores. At $-50\,^{\circ}\mathrm{C}$ H_a had to be drastically increased (e.g., from about 200 to 900 amp-turns) to prevent the computed curve from rising above the experimental curve for $0 \le F \le F_{th}$. This increase in H_a at lower temperatures means that the $\phi(F)$ curves at $^-\!\phi_{_T}$ are flatter at lower temperatures. This is qualitatively consistent with permeability measurements which generally show an increase in permeability as temperature increases and measurements of squareness ratio which decreases with an increase in temperature. The increase in ϕ_{r} , ϕ_{s} , and F_{c} as temperature decreases are well known effects.

The static $\phi(F)$ curves of Core K-1 cannot be as well described by the model as those for Core I-4. The experimental $\phi(F)$ curves have a relatively steep section just above the threshold, which the computed curve does not exhibit. Thus the computed curve has a lower F_{th} than does the experimental curve. Perhaps the inner radius of this type of core has a higher H threshold than the parts of the core with larger radius. The static $\phi(F)$ model assumes uniform material properties throughout the volume of the core. In practice, this problem is not serious because the threshold in the switching model is determined by F_0 , which is generally above F_{th} anyway. In other respects these $\phi(F)$ curves were quite well described by the model. The worst error, not including the threshold problem, is about 7.5 percent, and that is over a very small range of F near F=0.21 amp-turns for the 75°C curve.

The values of H_{q} , H_{n} , ϕ_{r} and ϕ_{s} are plotted in Figs. 37 and 38 for Cores I-4 and K-1, respectively. These values were used in the computations of $\dot{\phi}_{_{p}}(k)$ for a ramp-F drive in Part B-4. Since these curves are fairly linear, a temperature coefficient can be used to correct the parameters for variations in temperature. The values of these temperature coefficients were determined at 30°C and are given in Table II. These values are the primary objective of these measurements. It appears as if H_n for Core I-4 might go to zero at a temperature somewhat above 100°C but below the Curie temperature. This is possible since H_n is merely the vertical asymptote for the hyperbolic static B(H) curve. The ratio $\phi_{_{m r}}/\phi_{_{m s}}$ is nearly constant at 0.90 for Core K-1, but for Core I-4 has a maximum of 0.92 at about $30\,^{\circ}\mathrm{C}$ and a lower value above and below this temperature. At $75\,^{\circ}\mathrm{C}$ it . is 0.86. The sharpness of the wing of the static B(H) curve can be judged by the ratio H_q/H_n which is ≥ 1 . For H_q/H_n near unity, a very sharp wing is obtained and the side of the B(H) curve is very steep. This is usually a desirable characteristic. As $H_{m{q}}/H_{m{n}}$ increases the wing becomes more rounded and the side less steep. This H_q/H_n ratio is shown in Fig. 39. It must be remembered that Core K-1 has a steep $\phi(F)$ curve just above F_{th} which is not properly described by the static $\phi(F)$ model. Core K-1 is actually a little better than indicated by the ratio H_q/H_n as far as steepness is concerned. The core geometry has been accounted for in determining $\boldsymbol{H_q}$ and $\boldsymbol{H_n}$ so that $\boldsymbol{H_q}$ and $\boldsymbol{H_n}$ are a measure of the average material properties rather than the core properties.

FIG. 37 STATIC ϕ (F) PARAMETERS vs. TEMPERATURE FOR CORE I-4

FIG. 38 STATIC ϕ (F) PARAMETERS vs. TEMPERATURE FOR CORE K-1

FIG. 39 WING SHARPNESS OF STATIC ϕ (F) CURVES vs. TEMPERATURE

The static $\phi(F)$ curves for partially set states were obtained with a 1- μ sec PARTIAL-SET pulse except for Core I-4 at $-50\,^{\circ}$ C. For this case, the threshold had increased considerably and the current driver used for partial setting was unable to switch the core to $\phi=0$ in 1 μ sec. Therefore, the width had to be increased to 1.6 μ sec. In general, the amplitude of the 1- μ sec PARTIAL-SET pulse was adjusted so that the core would be partially set from $\phi=-\phi_r$ to $\phi=0$. The static $\phi(F)$ curve was obtained for both +F and -F. The curve for -F will be shown in the first rather than the fourth quadrant for easy comparison with the +F curves.

The static $\phi(F)$ curves for +F and -F for various temperatures are shown in Figs. 40 and 41, respectively for Core I-4 and in Figs. 42 and 43 for Core K-1. Qualitatively, the general character of these partially set curves is preserved throughout the temperature range. Note that the wing of each +F curve is more rounded than the threshold. This characteristic is reversed for the -F curves, where the threshold is more rounded than the wing. This property is enhanced for very slow partial setting. See, for

FIG. 40 STATIC $\phi(+F)$ vs. TEMPERATURE OF PARTIALLY-SET CORE I-4 PARTIAL-SET pulse = 1 μ sec (except at 50°C)

FIG. 41 STATIC ϕ (-F) vs. TEMPERATURE OF PARTIALLY-SET CORE I-4 PARTIAL—SET pulse = 1 μ sec (except at -50°C)

FIG. 42 STATIC $\phi(+F)$ vs. TEMPERATURE OF PARTIALLY-SET CORE K-1 PARTIAL-SET pulse = 1 $\mu \rm sec$

FIG. 43 STATIC $\phi(-F)$ vs. TEMPERATURE OF PARTIALLY-SET CORE K-1 PARTIAL-SET pulse = 1 μsec

example, Figs. 30(c) and (d) on page 91 of Report 3. The physical reason for this property can be explained as follows. During very slow partial setting, the regions of the core which have a lower H_{ϵ} switch rapidly and higher H_c regions switch more slowly. When switching is continued in the case of a positive TEST pulse the remaining unswitched regions are mostly of a high H_{α} which tends to give a relatively long extensive wing in the $\phi(F)$ curve as all the high H_{r} regions are finally switched at high F. contrast, when the F is negative (i.e., opposite in polarity to the PARTIAL-SET pulse) the TEST pulse switches the partially set flux back again to $-\phi_r$. Since this involves mostly the lower threshold regions a relatively sharp wing is obtained because few of the higher threshold regions had been partially set. This physical explanation is supported by the fact that this property is most evident for very slow partial set-Fast partial setting switches all regions of the core nearly equally, thereby reducing the differences between the +F and -F curves of $\phi(F)$. A better comparison of the positive and negative partially set curves and the major static $\phi(F)$ curves can be made in Fig. 44 for Core I-4 and in Fig. 45 for Core K-1. These figures include curves for one high and

FIG. 44 MAJOR AND PARTIALLY-SET STATIC $\phi(F)$ OF CORE 1-4 AT 75° AND 0°C PARTIAL—SET pulse = 1 μsec

FIG. 45 MAJOR AND PARTIALLY-SET STATIC $\phi(F)$ OF CORE K-1 AT 75° AND -50°C PARTIAL-SET pulse = 1 μsec

one low temperature (75°C and 0°C for Core I-4 and 75°C and -50°C for Core K-1). The 0°C curve was used rather than the -50°C curve for Core I-4 to avoid the one case in which a 1.6 μ sec-duration PARTIAL-SET pulse was used. The effects of partial setting upon the static $\phi(F)$ curves seems to be very much the same for the entire temperature range.

3. Step-F Switching

The effects of temperature on step-F switching will be studied by means of the $\dot{\phi}_p(F)$ curves. The primary goal is to obtain temperature coefficients for λ , F_0'' , and ν . Experimental $\dot{\phi}_p(F)$ data were measured for Core I-4 and Core K-1 at each of several temperatures in the range $-50\,^{\circ}\mathrm{C}$ to $+75\,^{\circ}\mathrm{C}$. These data were used to determine λ , F_0'' and ν versus temperature. No attempt was made to determine ρ_p , F_0 and F_B versus temperature because these values cannot be accurately determined for the range of F used

for the two cores tested. No $\phi_p(F)$ vs. temperature curves were taken for partially set states. This should also be investigated in the future.

The pulse sequence consisted of a SET pulse followed by a negative CLEAR pulse, a positive CLEAR pulse, and another negative CLEAR pulse. This CLEAR pulse sequence is used to completely remove all history effects (see p. 83 of Report 3). The SET pulse had a 60-nsec rise time (10% to 90% points) and a naximum amplitude of 5 amp-turns. It was supplied by four Digital Equipment Corp. Model 62 current drivers in parallel. The negative clear pulses were greater than 15 amp-turns for Core I-4 and 7.0 amp-turns for Core K-1. The $\dot{\phi}_p(F)$ and $\dot{\phi}_p(k)$ data for Core I-4 at 30°C were taken before the core had been cooled to -50°C. The other data were taken afterward. Dropping the temperature to -50°C and returning to room temperature seemed to alter the core's magnetic properties a small amount. Thus the 30°C $\dot{\phi}_p(F)$ and $\dot{\phi}_p(k)$ curves are not completely consistent with the rest of the data and have therefore been omitted. The exact cause of this small effect has not been determined. The static $\phi(F)$ curves at 30°C were taken both before and after the first -50°C excursion.

The $\dot{\phi}_p(F)$ curves for different temperatures are shown in Fig. 46 for Core I-4 and in Fig. 47 for Core K-1. It is readily apparent in these figures that the only major effect on $\dot{\phi}_p(F)$ of increasing temperature is the decrease in F_0'' . The decrease in F_0'' is to be expected since it is commonly known that $H_c^{}\mathrm{decreases}$ as temperature increases. This is illustrated by the static $\phi(F)$ curves of Figs. 35 and 36. The values of F_0'' , λ , and uwere determined for each temperature by plotting the $\dot{m{\phi}}_{p}(F)$ data on log-log paper. These values are shown vs, temperature in Fig. 48 for Core I-4 and in Fig. 49 for Core K-1. Note that u is nearly constant with temperature. The value of λ is also nearly constant for Core I-4, but increases somewhat with temperature for Core K-1. The value of λ depends upon a number of physical quantities so that it is not surprising if its temperature behavior differs for different cores. If we compare the parabolic model to the model of Menyuk and Goodenough, 14 then λ will be determined by the following quantities: the viscous damping parameter eta, the square of the saturation magnetization, $extit{M}_{ extit{S}}^2$, the density of domain nucleations, and $^{<}$ cos heta> which accounts for the statistical variation in the directions of the easy axes of individual ferrite grains.

FIG. 46 $\phi_{\rm p}({\rm F})$ vs. TEMPERATURE OF CORE I-4

FIG. 47 $\dot{\phi_{
m p}}({
m F})$ vs. TEMPERATURE OF CORE K-1

FIG. 48 $\dot{\phi}_{
m p}({
m F})$ PARAMETERS vs. TEMPERATURE FOR CORE I-4

FIG. 49 $\phi_{\rm p}({
m F})$ PARAMETERS vs. TEMPERATURE FOR CORE K-1

4. RAMP-F SWITCHING

The switching properties of a core with ramp-F excitation have been discussed in Sec. III-A for room temperature. It was shown that λ needs to be altered (lowered for Core E-6) from its step-F value in order that $\dot{\phi}_p(k)$ can be properly described by the parabolic model. It was also shown that the experimental $kt_p(k)$ curve has a somewhat lower slope than the computed curve, so that exact agreement can only be obtained at one k value. We now wish to determine what effect temperature variations have on these properties. Cores I-4 and K-1 were both investigated over the temperature range -50°C to +75°C. The equipment and the experimental technique are as described in Sec. III-A-4. The amplitude and duration of the CLEAR pulses are given in Sec. III-B-2.

The effects of temperature on $\dot{\phi}_{p}(k)$ is shown in Fig. 50 for Core I-4 and in Fig. 51 for Core K-1. At first glance these curves seem to vary haphazardly, but this is not actually the case. The general trend is for the lowest temperature curve to be on top at high k values, and on the bottom for low k values, so that each curve crosses all the others in going from low-k to high-k values. The only exception is that the curves for Core I-4 are not extended to low-enough k values for this crossing to be completed. Equation (102) for $\dot{\phi}_{p}(k)$ was derived by using the parabolic model with no static $\phi(F)$ limiting included [cf., Eq. (94)] with Eq. (105). Equation (102) results in a straight line (see Fig. 30) when $\dot{\phi}_{p}(k)$ is plotted with log-log scales. The slope of this line was shown (see Fig. 30) to be dependent only upon u. Thus, if u is constant with temperature, as it practically is in Core K-1 for step-F switching, parallel lines would result so that no crossing would be obtained. However, if ϕ_d is introduced into the model as shown in Eq. (105), then $\log \dot{\phi}_p(\log k)$ curves downward at low k values. This makes crossing of the curves possible even if $^{
u}$ is constant with temperature. Curves of $\dot{\phi}(k)$ using the ϕ_d parabolic model and step-F parameters were computed for Core K-1. The resulting curves showed

FIG. 50 $\dot{\phi_{\rm p}}({
m k})$ CURVES OF CORE I-4 vs. TEMPERATURE WITH RAMP F(t)

FIG. 51 $\phi_{p}(k)$ CURVES OF CORE K-1 vs. TEMPERATURE WITH RAMP F(t)

no tendency for crossing except for the $-50\,^{\circ}\mathrm{C}$ curve which crossed all the other three curves (i.e., for 24.6°, $+50\,^{\circ}$, and $+75\,^{\circ}\mathrm{C}$). Therefore, most, but not all, of the tendency for the experimental curves to cross is due to the parameters (namely λ and F_0'') varying from their step-F values. It was noted in Sec. III-A-5 that decreasing F_0'' increases the curvature in the computed log-log plot of $\phi_p(k)$. Thus, the reduced F_0'' values, F_{0r}'' , required for ramp-F switching will increase the tendency, for the $\phi_p(k)$ curves to cross. The slight increase in ν with temperature for Core I-4 makes the temperature variations more difficult to analyze.

The effects of temperature upon t_p can be examined from log-log plots of $kt_p(k)$. These curves are shown in Figs. 52 and 53 for Core I-4 and K-1 respectively. The major change with temperature is seen to be a vertical displacement. Examination of Eq. (101) or Eq. (103) shows that this can be caused by variations in λ , F_0'' , ν , ϕ_s , and ϕ_r . Only one of these parameters, F_0'' can be altered without much affecting the $\phi_p(k)$ curves. Equation (102) for ϕ_p is independent of F_0'' . Thus, for ramp-F switching, as for step-F switching, it is F_0'' which varies most significantly with

FIG. 52 $t_p(k)$ CURVES OF CORE I-4 vs. TEMPERATURE WITH RAMP F(t)

FIG. 53 $t_p(k)$ CURVES OF CORE K-1 vs. TEMPERATURE WITH RAMP F(t)

temperature. This would be expected. However, there is still the problem of getting the experimental and computed $kt_p(k)$ curves to agree for all k values. This was discussed for Core E-6 at room temperature in Sec. III-A-5 (see Fig. 34). To illustrate this problem for Core K-1, a computed curve is included in Fig. 53 for 75°C. It is shown as a dashed line. The value of λ_r for this curve was determined using Eq. (109). The value of $F_{0r}^{"}$ as determined from Eq. (112) for k=6 is approximately -0.24 amp-turns which seems unreasonable. Since a negative $F_{0r}^{"}$ seems unreasonable, a positive value equal to 1/2 $F_0^{"}$ was used. This resulted in good agreement for $\phi_p(k)$. Note, however, that the computed $t_p(k)$ curve in Fig. 53 crosses the corresponding experimental curve at about k=0.45. The computed curve at k=6 is considerably above the experimental curve.

Thus $F_{0r}^{"}$ would have to be reduced a lot more to give agreement at k=6. A new computation of $F_{0r}^{"}$ using Eq. (112) and the value of $t_{p \ calc}$ which was computed by using $\lambda_r=0.428$ and $F_{0r}^{"}=0.11$ gives the same negative value, -0.24, previously determined. Thus it does seem to be necessary to have a negative value of $F_{0r}^{"}$ in order to have t_p agree at k=6. The 75°C curve for Core K-1 is the only one which resulted in a negative value for $F_{0r}^{"}$; however, the values at +50°C and 24.6°C were also unreasonably low. This problem has not yet been resolved, but is probably closely related to the general disagreement between the computed and experimental $t_p(k)$ curves. This requires further investigation. Because of the problem concerning $t_p(k)$ and $F_{0r}^{"}$, no meaningful plot of $F_{0r}^{"}$ vs. temperature can be given.

The value of λ_r computed for Core I-4 at 75°C from Eq. (109) was 0.114; only slightly reduced from the step-F value of 0.121. Using this value of λ_r and $F_{0r}'' = F_0'' = 0.800$ amp-turns to compute $t_p(k)$ gave very good agreement with the experimental curve for 75°C. Thus Core I-4 behaves much differently than Cores E-6 and K-1 in this respect. The agreement for other temperatures was not as good as at 75°C, but much better than any of the $t_p(k)$ curves for Core K-1.

Values of λ_r were determined for each temperature for both Cores I-4 and K-1. This was done by using Eq. (109) and the values of $\phi_{p \text{ calc}}$ and $t_{p \text{ calc}}$ computed from step-F parameters. These values of λ_r were verified by using them to compute $\phi_p(k)$ as discussed in Sec. III-A-3. Since F_0'' , influences $\phi_p(k)$ only slightly, the values for F_0'' were used for Core I-4 and the values 1/2 F_0'' were used for Core K-1. In all cases the computed $\phi_p(k)$ was in good agreement with the experimental curves. These values of λ_r are plotted vs. temperature in Fig. 54 for Core I-4 and Fig. 55 for Core K-1. The step-F value of λ is also plotted for comparison. The λ_r for Core K-1 is much lower than λ over the entire temperature range, as was expected. The small number and the scatter of the data points makes it impossible to say for sure whether λ actually varies, as shown by the smooth curve, or whether it is approximately constant with temperature. About all we can assume is that the λ_r temperature coefficient is roughly zero at room temperature.

The λ_r curve for Core I-4 is surprising in two respects. It is not very much lower than λ above 0°C and it is significantly larger than λ at -50°C. If there is any close relationship between the effects of ramp-F

FIG. 54 VARIATIONS OF $\lambda_{\rm r}$ AND λ WITH TEMPERATURE FOR CORE 1-4

FIG. 55 VARIATIONS OF $\lambda_{\rm r}$ AND λ WITH TEMPERATURE FOR CORE K-1

switching and the effects of partial setting, as has been assumed on the basis of other experiments, then the ramp-F switching properties of Core I-4 certainly make this relationship difficult to understand.

It must be noted that the ratio of λ_r to λ is much lower for Cores K-1 and J-1 (discussed in Report 3) than for Cores I-4 and E-6. Cores K-1 and J-1 have two things in common which are not common to Cores I-4 and E-6: They are both Lockheed switch cores (Lockheed No. 100SC1 and 145SC1 respectively) and they both have a relatively large OD/ID ratio compared to Cores I-4 and E-6. It cannot yet be stated whether either of these is related to the lower λ_r/λ ratio for these cores than for Cores I-4 and E-6.

5. SUMMARY

The effects of temperature variations on the switching properties were investigated experimentally over the range $-50^{\circ}\mathrm{C}$ to $+75^{\circ}\mathrm{C}$. This was done for static $\phi(F)$ curves, $\dot{\phi}_p(F)$ curves for step-F switching, and $\dot{\phi}_p(k)$ and $t_p(k)$ curves for ramp-F switching. The static $\phi(F)$ curves were taken for both hard remanent and partially set states.

The core parameters were determined from these data and plotted vs. temperature. The parameters H_q , H_n , and F_0'' decreased very markedly with temperature, as expected. The value of ϕ_r and ϕ_s decreased significantly but not as much as H_q and H_n . The values of λ and ν were not very much altered by varying the temperature. Temperature coefficients are given in Table II. Three families of experimental static $\phi(F)$ curves with temperature as a parameter were given: (1) starting from $-\phi_r$; (2) starting from $\phi = 0$ with a positive F; and (3) starting from $\phi = 0$ with a negative F. The core was partially set with a 1- μ sec retangular current pulse. Families of $\phi_p(F)$, $\phi_p(k)$ and $t_p(k)$ were also included.

C. CONCLUSIONS

The flux-switching properties of square-loop ferrite cores, in response to a ramp-F drive, have been investigated as a function of the slope, k, of the ramp. Three cores were tested in the experiments. It was found that the static ϕ_d parabolic model could adequately describe the switching over a limited range of k, provided that λ and F_0'' are given new values λ_r and F_{0r}'' . Generally these values need to be lower than λ and F_0'' for step-F switching, but Core I-4 is an exception. There is no need to alter the step-F value of ν . A comparison between experiment

and computation for thin-ring Core E-6 showed that the shape of $\phi(t)$ computed by the model is accurate if appropriate values of λ_r and $F_{0r}^{"}$ are used. The experimental and computed $\phi_p(k)$ curves could be made to agree over the entire range of k studied (i.e., k=0.1 to 10 amp-turns/ μ sec) by using an appropriate value of λ . The computed $\phi_p(k)$ curve depends upon $F_{0r}^{"}$ only as a second-order effect. This second-order dependence is a result of including $\phi_d(F)$ in the model.

The computed $t_p(k)$ curves exhibited a tendency to cross the experimental curves. This crossing point can be fixed at any k value by appropriate adjustment of F_{0r}'' . Thus, in a practical application, F_{0r}'' should be chosen to make $t_p(k)$ agree with experiment near the center of the range of k values involved.

The determination of correct values for λ_r and F_{0r}'' for a new core requires that experimental measurements be made with a ramp-F drive. However, only a few experimental points need to be taken.

The effects of temperature upon the switching properties have been experimentally determined for two cores, thin-ring Core I-4 and Core K-1 (see Table II for information on these cores). The temperature range -50°C to $+75^{\circ}\text{C}$ was investigated. In general, the properties changed with temperature in only a quantitative way. The experiments indicate that the parabolic model should be as useful at any temperature in this range as it is at room temperature. The values of the parameters H_q , $H_{\rm n}$, $\phi_{\rm r}$, ϕ_s , F_0'' , λ , ν , and λ_r have been plotted vs . temperature. The most significant effect of increasing temperature is the decrease in the static $\phi(F)$ parameters H_q and H_n , and in the threshold, F_0'' , of the $\dot{\phi}_p(F)$ curve. The values of $\phi_{\rm r}$ and $\phi_{\rm s}$ also decrease with temperature but less severely than H_q , H_n , and F_0'' . The values of λ and u are not strongly dependent upon temperature. The small variation in λ with increasing temperature for Core I-4 was, if anything, downward. Core K-1, on the other hand, exhibited a measurable increase in λ with an increase in temperature (about 0.16 percent per $^{\circ}C$ at 30 $^{\circ}C$).

The effects of temperature upon the static $\phi(F)$ curves starting from a partially set state are difficult to describe quantitatively, since we do not yet have equations to describe these curves. The general shape, relative to the major static $\phi(F)$ curves, was largely unchanged with temperature (see Figs. 44 and 45).

The $\dot{\phi}_p(k)$ curves for ramp-F switching were not very strongly influenced by changes in temperature. Presumably this is a result of $\dot{\phi}_p(k)$ being nearly independent of F_0'' which is the major temperature-dependent parameter.

The $t_p(k)$ curves are shifted downward by increasing temperature. The shape is relatively unchanged in other aspects. This downward shift is probably a result of the decrease in F_0'' with temperature, although the tendency for the computed $t_p(k)$ curves to cross the experimental curves is not yet understood. An additional problem with $t_p(k)$ showed up at $+50^{\circ}$ and $+75^{\circ}$ C. This is the apparent negative, or very low positive, value for F_{0r}'' . The fact that the OD/ID ratio of the core has not been accounted for in the model [except for $\phi_d(F)$] may be responsible for some of this trouble. These problems with $t_p(k)$ and F_0'' require further investigation.

The ramp-F switching properties of Core I-4, in relation to step-F switching properties, are different than for the other three cores which have been tested (this includes Cores E-6, K-1 and a one-point check on Core J-1 in Report 3). The relationship of parameter variations for ramp-F switching and switching from a partially set state is not yet understood; although, a close relationship must exist. Except for Core I-4, λ and F_0'' are reduced from step-F values for both cases. Core I-4, on the other hand, exhibited a large reduction in λ for a partially set state (see p. 113 of Report 3) but only a small reduction for ramp-F switching (even an increase at $-50\,^{\circ}$ C). This relationship appears to require rather extensive work before it can be clearly understood. However, the presently used switching model can be used in many practical applications where F(t) is approximately a ramp function.

APPENDIX A

COMPUTER PROGRAM FOR PROCEDURE $\dot{\phi}_{\epsilon}(F, \Delta_t, NV, \dot{\phi}_{\epsilon}')$

Language: ALGOL 60.

Program Description: Computes $\dot{\phi}_{\epsilon}$ and $\dot{\phi}'_{\epsilon}$ for given values of \dot{F} , Δ t, and NV (negligible value of $\dot{\phi}_{\epsilon}$ below which $\dot{\phi}_{\epsilon}$ is assumed to be zero). Switching parameter ϵ is global.

Identifiers: *

Identifier	Symbol	Identifier	Symbol
DELT	$\Delta_{m{t}}$	PHIDOTE	$\dot{\phi}_{\epsilon}$
EPS	ϵ	PHIDOTEPRIME	$\overset{ au}{\phi}^{\prime}_{\epsilon}$
FDOT	\ddot{F}	PHIDTE	$\dot{\phi}_{\epsilon}$
NV	NV		$\gamma \epsilon$

REAL PROCEDURE PHIDOTE (FDOT, DELT, NV, PHIDOTEPRIME); COMMENT: THIS PROCEDURE COMPUTES PHIDOTE AND PHIDOTEPRIME VS. FDOT AND DELT. PHIDOTE IS ASSUMED ZERO IF BELOW NV. THE PROCEDURE USES GLOBAL PARAMETER EPS.; VALUE FDOT, DELT, NV; REAL FDOT, DELT, NV, PHIDOTEPRIME; BEGIN REAL PHIDTE; PHIDOTE + EPS × FDOT; PHIDOTE + IF PHIDTE > NV THEN PHIDTE ELSE 0; PHIDOTEPRIME + IF PHIDTE > NV THEN EPS / DELT FLSE 0;	PHDOTE01 PHDOTE02 PHDOTE03 PHDOTE04 PHDOTE05 PHDOTE06 PHDOTE07 PHDOTE08 PHDOTE09
PHIDOTEPRIME + IF PHIDTE > NV THEN EPS / DELT ELSE 0; END OF PHIDOTE;	PHDOTE19 PHDOTE11 PHDOTE11

Listed in alphabetic order.

APPENDIX B

COMPUTER PROGRAM FOR PROCEDURE $\phi_i(F, t, T_i, \phi_i')$

Language: ALGOL 60

 $\frac{\text{Program Description:}}{\text{Switching parameters }\lambda_i,\ \nu_i,\ C_i\ \text{and}\ F_i\ \text{for given values of }F\ \text{and}\ t.$

Identifiers:

<u>Identifier</u>	Symbol	<u>Identifier</u>	Symbol
CI	C_{i}	PHIDOTI	.
F	\boldsymbol{F}	PHIDOTIPRIME	$\dot{\phi}$
FDEX	$F_{\rm ex}$	PHIDTI	$\dot{\phi}$.
FI	$F_{i}^{\circ k}$	T	t
LAMBDAI	λ_{i}	TI	$oldsymbol{T}$.
NUI	ν.		i

```
REAL PROCEDURE PHIDOTI (F. T. TI. PHIDOTIPRIME);
                                                                      PHDOTI01
COMMENT: THIS PROCEDURE COMPUTES PHIDOTI AND PHIDOTIPRIME VS. F. T
                                                                      PHDOTI02
, AND TI. THE PROCEDURE USES GLOBAL PARAMETERS LAMBDAI, NUI, CI,
                                                                      PHDOTI03
AND FI.;
                                                                      PHDOTI04
VALUE F. T:
                                                                      PHDOTI05
REAL F, T, TI, PHIDOTIPRIME:
                                                                      PHDOTI06
BEGIN REAL FDEX, PHIDTI;
                                                                      PHDOTIO7
   FDEX + F - FI;
                                                                      PHDOTIO8
   IF TI \neq 0 THEN PHIDTI + LAMBDAI × FDEX + NUI × EXP ((TI - T) ×
                                                                      PHDOTI09
   FDEX / CI) ELSE
                                                                      PHDOTI10
   BEGIN PHIDTI + 0;
                                                                      PHDOTI11
      IF FDEX > 0 THEN
                                                                      PHDOTI12
        BEGIN TI + T; PHIDTI + LAMBDAI × FDEX + NUI × EXP ((TI - T) PHDOTI13
          FDEX / CI) ;
                                                                      PHDOTI14
        END!
                                                                      PHDOTI15
   END;
                                                                      PHDOTI16
   PHIDOTI + IF PHIDTI > 0.0010 × LAMBDAI × FDEX THEN PHIDTI ELSE
                                                                      PHDOTI17
                                                                      PHDOTI18
   PHIDOTIPRIME + IF PHIDTI > 0.0010 × LAMBDAI × FDEX THEN PHIDTI
                                                                      PH40TI19
   × (NUI / FDEX - (T - TI) / CI) ELSE O:
                                                                      PHDOTI20
END PHIDOTI:
                                                                      PHDOTI21
```

APPENDIX C

COMPUTER PROGRAM FOR PROCEDURE $\dot{\phi}_{\pi a}(F,\phi,\phi_d,\dot{\phi}'_{\pi a})$

Language: ALGOL 60

 $\frac{\text{Program Description:}}{\text{Switching parameters }l_i,\ l_o,\phi_r,\phi_s,\ H_a,\ H_q,\ H_n,\ \lambda,\ F_0'',\ \nu,\ \rho_p,\ F_0,\ F_B,\ F_{12},\ F_{23},\ V_1\ \text{and}\ V_2\ \text{are global.}}$

Identifiers:

Identifier	Symbol	Identifier	Symbol
F	$\boldsymbol{\mathit{F}}$	РНІ	
FB	F_{B}	PHID	ϕ
F0	F_0^B	PHIDOTMA	$\overset{oldsymbol{\phi}_{oldsymbol{d}}}{oldsymbol{\phi}_{oldsymbol{a}_{oldsymbol{a}_{oldsymbol{d}}}}$
F0PP	F".	PHIDOTMAPRIME	ϕ_{ma}
F12	F_{12}	PHIDOTP	a, u
F23	F_{23}^{23}	PHIDOTPPRIME	φ _p φ' _p φ' _d
НА	H_{a}^{ω}	PHIDPRIME	ϕ_{p}
HN	H_n	PHIR	
HQ	$H_{q}^{"}$	PHIS	ϕ_r
LAMBDA	λ	ROP	ϕ_s
LI	l_{i}	V1	ρ_{p}
LO	7	V2	V_{1}
NU	0	, 2	v ₂

REAL PROCEDURE PHIDOTMA (F, PHI, PHID, PHIDOTMAPRIME); COMMENT: THIS PROCEDURE COMPUTES PHIDOTMA, PHID, AND PHIDOTMAPRIME FOR GIVEN VALUES OF F AND PHI. GLOBAL CORE PARAMETERS ARE: LI,LO, PHIR,PHIS,HA,HQ,HN,LAMBDA,FOPP,NU,ROP,FO,FB,F12,F23,V1,AND V2.; REAL F, PHI, PHID, PHIDOTMAPRIME; BEGIN REAL PHIDPRIME, PHIDOTP, PHIDOTPPRIME; COMMENT: COMPUTE PHID AND PHIDPRIME VS. F.; IF F & F12 THEN BEGIN PHID + V1 × F × LN ((F - HA × LO) / (F - HA × LI)) - PHIR PHIDPRIME + V1 × (LN ((F - HA × LO) / (F - HA × LI))) + F × (1 / (F - HA × LO) - 1 / (F - HA × LI))) END;	PHDTMA01 PHDTMA02 PHDTMA03 PHDTMA04 PHDTMA05 PHDTMA06 PHDTMA06 PHDTMA08 PHDTMA09 PHDTMA10 PHDTMA11 PHDTMA12 PHDTMA13
--	--

```
PHDTMA14
 IF F12 < F AND F & F23 THEN
 BEGIN PHID + V2 × (F / HQ - LI + F × (1 / HN - 1 / HQ) × LN ((1
                                                                    PHDTMA15
                                                                     PHDTMA16
    - HN / HQ) / (1 - HN × LI / F))) - PHIR)
    PHIDPRIME + V2 × (1 / HQ + (1 / HN - 1 / HQ) × (LN (F × (1 -
                                                                    PHDTMA17
    HN / HQ) / (F - HN × LI)) - HN × LI / (F - HN × LI)))
                                                                     PHDTMA18
                                                                     PHDTMA19
                                                                     PHDTMA20
 END:
 BEGIN PHID + V2 × (L0 - LI + F × (1 / HN - 1 / HQ) × LN ((F -
                                                                     PHDTMA21
                                                                     PHDTMA22
    HN × LO) / (F - HN × LI))) - PHIR;
    PHIDPRIME + V2 × (1 / HN - 1 / HQ) × (LN ((F - HN × LO) / (F
                                                                     PHDTMA23
    - HN \times LI)) + F \times HN \times (LO - LI) / ((F - HN \times LO) \times (F - HN
                                                                     PHDTMA24
                                                                     PHDTMA25
    x LI)))
                                                                     PHDTMA26
 COMMENT: COMPUTE PHIDOTP AND PHIDOTPPRIME VS. F.;
                                                                     PHDTMA27
                                                                     PHDTMA28
  IF F & FOPP THEN
                                                                     PHDTMA29
  BEGIN PHIDOTP + 0;
                                                                     PHDTMA30
     PHIDOTPPRIME + 0
                                                                     PHDTMA31
                                                                     PHDTMA32
  END:
  IF FOPP < F AND F & FB THEN
                                                                     PHDTMA33
  BEGIN PHIDOTP + LAMBDA × (F - FOPP) * NU;
     PHIDOTPPRIME + LAMBDA × NU × (F - FOPP) * (NU - 1)
                                                                     PHDTMA34
                                                                     PHDTMA35
                                                                     PHDTMA36
  END:
  IF FB < F THEN
                                                                     PHDTMA37
  BEGIN PHIDOTP + ROP x (F - F0);
                                                                     PHDTMA38
     PHIDOTPPRIME + ROP
                                                                     PHDTMA39
                                                                     PHDTMA40
  COMMENT: COMPUTE PHIDOTMA AND PHIDOTMAPRIME.;
  END:
  PHIDOTMA + IF PHID - PHI > 0.001 × PHIR THEN PHIDOTP × (1 - ((2 PHDTMA41
  × PHI + PHIR - PHID) / (PHIR + PHID)) * 2) ELSE 0;
  PHIDOTMAPRIME + IF PHID - PHI > 0.0010×PHIR THEN (1 - ((2 × PHI
                                                                     PHDTMA43
  + PHIR - PHID) / (PHIR + PHID)) * 2) × PHIDOTPPRIME + 4 × PHIDOTPPHDTMA44
  x (2 x PHI + PHIR - PHID) x (PHI + PHIR) x PHIDPRIME / (PHIR +
                                                                      PHDTMA46
   PHID) * 3 ELSE 0 F
                                                                      PHDTMA47
END PHIDOTMA;
```

APPENDIX D

COMPUTER PROGRAMS FOR $\phi \cong \phi_i + \phi_{\pi a}$

1. PROCEDURE $\dot{\phi}(F, \phi, \phi_d, \dot{\phi}')$

Language: ALGOL 60

Program Description: Computes $\dot{\phi}$, ϕ_d , and $\dot{\phi}'$ for given values of F and ϕ . Switching parameters l_i , l_o , ϕ_r , ϕ_s , H_a , H_q , H_n , λ , F_0'' , ν , ρ_p , F_0 , and F_B are global.

Identifiers:

(1) Analytical identifiers

Same as in Appendix C, except for PHIDOT ($\dot{\phi}$) and PHIDOTPRIME ($\dot{\phi}'$).

(2) Auxiliary identifiers

ldentifier	Description	
DONE	Boolean variable	
OK	Label	

```
REAL PROCEDURE PHIDOT(F,PHI,PHID,PHIDOTPRIME);
    COMMENT: THIS PROCEDURE COMPUTES PHIDOT, PHID, AND PHIDOTPRIME FOR GIVEN VALUES OF F AND PHI. CORE PARAMETERS, WHICH MUST BE
                                                                                PHIDOT01
                                                                                PHIDOT02
                                                                                PHIDOT03
        SUPPLIED FROM OUTSIDE THE PROCEDURE, ARE:
                                                                                PHIDOT04
        LI, LO, PHIR, PHIS, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO, FB; PHIDOTOS
    REAL F, PHI, PHID, PHIDOTPRIME;
                                                                                PHIDOT06
                                                                                PHIDOT07
    REAL PHIDPRIME, PHIDOTP, PHIDOTPPRIME ;
                                                                                PHIDOT08
    OWN REAL F12, F23, V1, V2;
                                                                                PHIDOT09
    LABEL OK!
                                                                                PHIDOT10
    OWN BOOLEAN DONE;
                                                                                PHIDOT11
    COMMENT: COMPUTE F12, F23, V1, AND V2 ONLY ONCE.;
                                                                                PHIDOT12
        IF DONE THEN GO TO OK;
                                                                                PHIDOT13
             DONE + TRUE;
                                                                                PHIDOT14
             F12 + HQXLI ;
                                                                                PHIDOT15
            F23 + HQ×LO ;
                                                                                PHIDOT16
             V1 + (PHIS-PHIR)/((LO-LI)×HA);
                                                                                PHIDOT17
             V2 + (PHIS+PHIR)×HQ/((LO-LI)×HN);
                                                                                PHIDOT18
   OK:
                                                                                PHIDOT19
```

Lines PHDTMA07 through PHDTMA39 of

PROCEDURE $\dot{\phi}_{ma}(F,\phi,\phi_d,\dot{\phi}')$, APPENDIX C

COMMENT: COMPUTE PHIDOT AND PHIDOTPRIME.;

PHIDOT + IF PHID-PHI > 0.001×PHIR THEN PHIDOTP×(1-((2×PHI+PHIS PHIDOT58 PHIDOT59 PHIDOTPRIME + (1-((2×PHI+PHIS-PHID))/(PHIS+PHID))*2)×PHIDOTPRIME PHIDOT60 PHIDOTPX(2×PHI+PHIS-PHID)×(PHI+PHIS)×PHIDPRIME/(PHIS+PHID)*3 PHIDOT62 PHIDOT61

2. PROCEDURE $\dot{\phi}(F, \phi, \dot{\phi}', \dot{\phi}^*)$

Language: ALGOL 60

 $\frac{\text{Program Description:}}{\text{Switching parameters }l_i,\ l_o,\ \phi_r,\ \phi_s,\ H_{\mathbf{a}},\ H_q,\ H_n,\ \lambda,\ F_0'',\ \nu,\ \rho_p,\ F_0\ ,}{F_B,\ F_{12}\ ,\ F_{23}\ ,\ V_1,\ \text{and}\ V_2\ \text{are global.}}$

Identifiers:

Same as in Appendix C, except for PHIDOT ($\dot{\phi}$) and PHIDOTPRIME ($\dot{\phi}'$).

Program:

REAL PROCEDURE PHIDOT (F, PHI, PHIDOTPRIME, PHIDOTSTAR); PHIDOT01 COMMENT: THIS PROCEDURE COMPUTES THE MAIN PHIDOT, PHIDOTPRIME AND PHIDOT02 PHIDOTSTR FOR GIVEN VALUES OF F AND PHI. THE PROCEDURE USES THE PHIDOT03 FOLLOWING GLOBAL PARAMETERS: LI, LO, PHIR, PHIS, HA, HQ, HN, LAMBDA, PHIDOT04 PHIDOT05 FOPP, NU, ROP, FO, FB, F12, F23, V1, AND V2; PHIDOT06 VALUE F. PHII PHIDOT07 REAL F, PHI, PHIDOTPRIME, PHIDOTSTAR; PHIDOT08 BEGIN REAL PHIDPRIME, PHID, PHIDOTP, PHIDOTPPRIME;

Lines PHDTMA07 through PHDTMA39 of PROCEDURE $\dot{\phi}_{\text{m-a}}(F,\phi,\phi_d,\dot{\phi}')$, APPENDIX C

COMMENT: COMPUTE PHIDOT+ PHIDOTPRIME AND PHIDOTSTAR+; PHIDOT41 PHIDOT + IF PHID - PHI > 0.001 × PHIR THEN PHIDOTP × (1 - ((2 × PHIDOT42 PHIDOT43 PHI + PHIS - PHID) / (PHIS + PHID)) * 2) ELSE 01 PHIDOTPRIME + IF PHID - PHI > 0.0010 × PHIR THEN (1 - ((2 × PHI + PHIDOT44 PHIS - PHID) / (PHIS + PHID)) * 2) x PHIDOTPPRIME + 4 x PHIDOTP x (PHIDOT45 2 × PHI + PHIS - PHID) × (PHI + PHIS) × PHIDPRIME / (PHIS + PHID) PHIDOT47 * 3 ELSE 01 PHIDOTSTAR + - 4 × PHIDOTP × (2 × PHI + PHIS - PHID) / (PHIS + PHIDOT48 PHIDOT49 PHID) * 21 PHIDOT50 END PHIDOT!

APPENDIX E

COMPUTER PROGRAM FOR ϕ_ϵ , ϕ_{*} , ϕ_{*} and ϕ of unloaded core

Language: ALGOL 60

Program Description: Computes i_D , $\dot{\phi}_{\epsilon}$, $\dot{\phi}_i$, $\dot{\phi}_{\mathbf{m}a}$, $\dot{\phi}$, ϕ , ϕ_d and F versus t for given core parameters and drive function.

Identifiers:

(1) Analytical identifiers

Identifier	Symbol	Identifier	Symbol
CAPID	I_{D}	ND	N_{D}
CI	C_{i}	NU	u
DELT	Δt	NUI	$\nu_{_{i}}$
EPS	ϵ	PHIC	$\phi^{^{1}}$
F	$\boldsymbol{\mathit{F}}$	PHIC1	ϕ_{n-1}
FB	F_{R}	PHIC2	ϕ_{n-2}^{n-1}
FDOTC	F _B	PHIDC	$\phi_{\mathbf{d}}$
FI	F_{i}	РНІДОТС	ϕ
F0	F_0	PHIDOTC1	$\dot{\phi}_{n-1}$
F0I	F_{0i}	PHIDOTEC	$\dot{\phi}_{\epsilon}^{n-1}$
F0PP	$F_0^{"}$	PHIDOTEPR	ϕ'
F12	F 12	PHIDOTIC	φ΄, φ΄, φ΄,
F23	F_{23}	PHIDOTIPR	$\dot{\phi}'$
НА	H_{a}	PHIDOTMAC	$\overset{\iota}{\phi}_{_{\mathbf{R}a}}$
HQ	H_{q}	PHIDOTMAPR	$\dot{\phi}_{_{\mathbf{z}a}}^{^{\mathbf{z}a}}$
HN	H_n	PHIR	ϕ_{r}
ID	i D	PHIS	ϕ_s
LAMBDA	λ	ROP	$\rho_{_{p}}$
LAMBDAI	λ_{i}	SP	S_p
LI	l_{i}	T	t P
LO	l	TAUS	$ au_{_{\mathbf{s}}}$

Identifier	Symbol	<u>Identifier</u>	$\underline{\text{Symbol}}$
TF TH	T_{f} T_{h}	TS U V1	T_s u V_s
TIC TM TR	T_{i} t_{m} T_{r}	V2	V ₂

(2) Auxiliary identifiers

Identifier	Description
A1	Abbreviation for $\left(S_p - \frac{I_D}{t_m}\right)/(t_m)^2$
A2	Abbreviation for $\left(\frac{3}{2} \frac{I_D}{t_m} - S_p\right) / t_m$
CIRCUITPARAMETERH	Format for the list CIRCUITPARAMETERL.
CIRCUITPARAMETERL	List of drive parameters ($I_{\it D}$, $N_{\it D}$, $T_{\it r}$, u , $t_{\it m}$,
	and S_p).
CIRCUITPARAMETERS	List of drive parameters $(I_p, t_m, S_p, \Delta t,$
	and plot scales for t , F , ϕ , and type) for
	input-data cards.
CORENAME	Name of core.
COREPARAMETERH	Format for the list COREPARAMETERL.
COREPARAMETERL	List of core parameters.
COREPARAMETERS	List of core parameters for input-data cards.
COUNT	Index number of $\triangle t$.
CTS	Index number of iteration.
C0	$\phi_{n(j=1)} - \phi_{n(j=0)}$
DELPHIC	$\phi_{n(j)} - \phi_{n(j-1)}.$
FSCALE	F scale (for plotting).
GUESS	Label of location where prediction is made.
K	Index number of Δt for plotting.
LOOP	Label of location where iterative computation
	begins.
NV	Negligible value of $\dot{\phi}_\epsilon.$
OUTPUTFORMAT	Format for the list OUTPUTVARIABLES.
OUTPUTHEADING	Format for output-column heading.
OUTPUTVARI ABLES	List of results $(t, i_D, \dot{\phi}_\epsilon, \dot{\phi}_i, \dot{\phi}_{ma}, \dot{\phi}, \phi, \phi_d, F, \text{ and } j_{max}).$
	I, and J max'

Identifier	Description
P	Boolean variable determining type of output (for plotting).
PLOTE	Label (for plotting).
PSCALE	$\dot{\phi}$ scale (for plotting).
QUIT	Label of location where computation terminates.
QUI TCKT	Label of location where computation of given
	circuit parameters terminates.
STARTCKT	Label of location where computation for given
	drive begins.
STARTCORE	Label of location where computation for given
	core begins.
SWITCHING	Label of location where computation starts for
	each Δ_t .
ТНЕТА5	$[\phi_{n(j=5)} - \phi_{n(j=4)}]/[\phi_{n(j=1)} - \phi_{n(j=0)}]$
TSCALE	Time scale (for plotting).

ELASTIC AND INELASTIC INITIAL PHIDOT SPIKES OF AN UNLOADED CORE. BEGIN COMMENT: DECLARATION OF CORE PARAMETERS.; ALPHA COREMAME; REAL LI, LO, PHIR, PHIS, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO, FB OUS, VI, V2, F12, F23, EPS, LAMBDAI, NUI, CI, F0I, FI; COMMENT: DECLARATION OF CIRCUIT PARAMETERS.; REAL CAPID, ND, TR, U, TM, SP, TS, TAUS, TH, TF, A1, A2; COMMENT: DECLARATION OF VARIABLES.; REAL T, DELT, TIC, ID, F, FDOTC, PHIDOTC, PHIDOTC1, PHIDOTMAC, PHIDOTEC, PHIDOTIC, PHIDOTMAPR, PHIDOTEPR, PHIDOTIPR, PHIC, PHIC1, PHIC2, DELPHIC, CO, THETAS, PHIDC; COMMENT: DECLARATION OF MISCELLANEOUS.; REAL NV, TSCALE, FSCALE, PSCALE; INTEGER LINES, COUNT, CTS, K; BOOLEAN P; LABEL STARTCORE, STARTCKT, SWITCHING, GUESS, LOOP, QUITCKT, PLOTE, QUIT; REAL ARRAY PHIDTA, QDTA, TINEA [0:500]; COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.; FILE CR 0 (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO, FB, LAMBDAI, NUI, CI, F0I); LAMBDA, FOPP, NU, ROP, FO, FB, LAMBDAI, NUI, CI, F0I); LIST COREPARAMETERS (CORENAME, LI × 193, LO × 193, PHIR × 198, PHIS × 198, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO, FB, EPS × 199, LAMBDAI, NUI, CI × 196, F0I); LIST CIRCUITIPAPAMETERS (CARID, TM, ERDELT, TSCALE, ESCALE, DOCALE, DANGEROUS)		
COMMENT: DECLARATION OF CORE PARAMETERS.; ALPHA CORENAME; REAL LI, LO, PHIR, PHIS, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO, FB V1, V2, F12, F23, EPS, LAMBDAI, NUI, CI, FOI, FI; COMMENT: DECLARATION OF CIRCUIT PARAMETERS.; REAL CAPID, ND, TR, U, TM, SP, TS, TAUS, TH, TF, A1, A2; COMMENT: DECLARATION OF VARIABLES.; REAL T, DELT, TIC, ID, F, FDOTC, PHIDOTC, PHIDOTC, PHIDOTMAC, PHIDOTEC, PHIDOTIC, PHIDOTMAPR, PHIDOTEPR, PHIC, PHIC, PHIC1, PHIC2, DELPHIC, CO, THETAS, PHIDC; COMMENT: DECLARATION OF MISCELLANEOUS.; REAL NY, TSCALE, FSCALE, PSCALE; INTEGER LINES, COUNT, CTS, K; BOOLEAN P; LABEL STARTCORE, STARTCKT, SWITCHING, GUESS, LOOP, QUITCKT, PLOTE, QUIT; REAL ARRAY PHIDTA, QDTA, TIMEA [0:500]; COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.; FILE CO (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, O22 LAMBDA, FOPP, NU, ROP, FO, FB, LAMBDAI, NUI, CI, FOI); LIST COREPARAMETER (CORENAME, LI × 193, LO × 193, PHIR × 198, PHIS × 198, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO, FB, EPS × 199, LAMBDAI, NUI, CI × 196, FOI);	ELASTIC AND INELASTIC INITIAL PHIDOT SPIKES OF AN UNLOADED CORE.	
ALPHA CORENAME; REAL LI, LO, PHIR, PHIS, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO, FB , V1, V2, F12, F23, EPS, LAMBDAI, NUI, CI, F0I, FI; COMMENT: DECLARATION OF CIRCUIT PARAMETERS.; REAL CAPID, ND, TR, U, TM, SP, TS, TAUS, TH, TF, A1, A2; COMMENT: DECLARATION OF VARIABLES.; REAL T, DELT, TIC, ID, F, FDOTC, PHIDOTC1, PHIDOTMAC, PHIDOTEC, PHIDOTIC, PHIDOTMAPR, PHIDOTEPR, PHIDOTIPR, PHIC, PHIC1, PHIC2, DELPHIC, CO, THETAS, PHIDC; COMMENT: DECLARATION OF MISCELLANEOUS.; REAL NV, TSCALE, FSCALE, PSCALE; INTEGER LINES, COUNT, CTS, K; BOOLEAN P; LABEL STARTCORE, STARTCKT, SWITCHING, GUESS, LOOP, GUITCKT, PLOTE, GUIT; REAL ARRAY PHIDTA, GDTA, TIMEA [0:500]; COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.; FILE CR 0 (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, 1022 LAMBDA, FOPP, NU, ROP, F0, FB, LAMBDAI, NUI, CI, F0I); LIST COREPARAMETERL (CORENAME, LI × 193, LO × 193, PHIR × 198, PHIS × 198, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, EPS × 199, 1026		0.02
REAL LI, LO, PHIR, PHIS, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO, FB , V1, V2, F12, F23, EPS, LAMBDAI, NUI, CI, F0I, FI; COMMENT: DECLARATION OF CIRCUIT PARAMETERS.; REAL CAPID, ND, TR, U, TM, SP, TS, TAUS, TH, TF, A1, A2; COMMENT: DECLARATION OF VARIABLES.; REAL T, DELT, TIC, ID, F, FDOTC, PHIDOTC, PHIDOTC1, PHIDOTMAC, PHIDOTEC, PHIDOTIC, PHIDOTMAPR, PHIDOTEPR, PHIDOTIPR, PHIC, PHIC1, PHIC2, DELPHIC, CO, THETAS, PHIDC; COMMENT: DECLARATION OF MISCELLANEOUS.; REAL NV, TSCALE, FSCALE; INTEGER LINES, COUNT, CTS, K; BOOLEAN P; LABEL STARTCORE, STARTCKT, SWITCHING, GUESS, LOOP, QUITCKT, PLOTE, QUIT; REAL ARRAY PHIDTA, QDTA, TIMEA [0:500]; COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.; FILE CR 0 (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, 1022 LAMBDA, FOPP, NU, ROP, FO, FB, LAMBDAI, NUI, CI, F0I); LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108, PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO, FB, EPS × 109, LAMBDAI, NUI, CI × 106, F0I);		003
REAL LI, LO, PHIR, PHIS, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO, FB, VI, V2, F12, F23, EPS, LAMBDAI, NUI, CI, F0I, FI; COMMENT: DECLARATION OF CIRCUIT PARAMETERS.; REAL CAPID, ND, TR, U, TM, SP, TS, TAUS, TH, TF, A1, A2; COMMENT: DECLARATION OF VARIABLES.; REAL T, DELT, TIC, ID, F, FDOTC, PHIDOTC1, PHIDOTMAC, D10 PHIDOTEC, PHIDOTIC, PHIDOTMAPR, PHIDOTEPR, PHIDOTIPR, PHIC, PHIC1, D11 PHIC2, DELPHIC, CO, THETA5, PHIDC; COMMENT: DECLARATION OF MISCELLANEOUS.; REAL NV, TSCALE, FSCALE, PSCALE; BOOLEAN P; LABEL STARTCORE, STARTCKT, SWITCHING, GUESS, LOOP, QUITCKT, PLOTE, QUIT; REAL ARRAY PHIDTA, QDTA, TIMEA [O:500]; COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.; FILE CR O (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, D22 LAMBDA, FOPP, NU, ROP, FO, FB, LAMBDAI, NUI, CI, FOI); LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108, PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO, FB, EPS × 109, LAMBDAI, NUI, CI × 106, FOI);		004
COMMENT: DECLARATION OF CIRCUIT PARAMETERS.; REAL CAPID, ND, TR, U, TM, SP, TS, TAUS, TH, TF, A1, A2; COMMENT: DECLARATION OF VARIABLES.; REAL T, DELT, TIC, ID, F, FDOTC, PHIDOTC, PHIDOTC1, PHIDOTMAC, PHIDOTEC, PHIDOTIC, PHIDOTMAPR, PHIDOTEPR, PHIDOTIPR, PHIC, PHIC1, PHIC2, DELPHIC, CO, THETAS, PHIDC; COMMENT: DECLARATION OF MISCELLANEOUS.; REAL NV, TSCALE, FSCALE, PSCALE; INTEGER LINES, COUNT, CTS, K; BOOLEAN P; LABEL STARTCORE, STARTCKT, SWITCHING, GUESS, LOOP, QUITCKT, PLOTE, QUIT; REAL ARRAY PHIDTA, QDTA, TIMEA [0:500]; COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.; FILE CR 0 (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, 022 LIST COREPARAMETERL (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, 023 LIST COREPARAMETERL (CORENAME, LI × 193, LO × 193, PHIR × 198, PHIS × 198, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO, FB, EPS × 199, LAMBDAI, NUI, CI × 196, FOI];	REAL LI, LO, PHIR, PHIS, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO, FB	
COMMENT: DECLARATION OF CIRCUIT PARAMETERS.; REAL CAPID, ND, TR, U, TM, SP, TS, TAUS, TH, TF, A1, A2; COMMENT: DECLARATION OF VARIABLES.; REAL T, DELT, TIC, ID, F, FDOTC, PHIDOTC, PHIDOTC1, PHIDOTMAC, PHIDOTEC, PHIDOTIC, PHIDOTMAPR, PHIDOTEPR, PHIDOTIPR, PHIC, PHIC1, PHIC2, DELPHIC, CO, THETAS, PHIDC; COMMENT: DECLARATION OF MISCELLANEOUS.; REAL NV, TSCALE, FSCALE, PSCALE; INTEGER LINES, COUNT, CTS, K; BOOLEAN P; LABEL STARTCORE, STARTCKT, SWITCHING, GUESS, LOOP, QUITCKT, PLOTE, QUIT; REAL ARRAY PHIDTA, QDTA, TIMEA [0 : 500]; COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.; FILE CR 0 (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, LAMBDAI, NUI, CI, F0I); LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108, PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, EPS × 109, LAMBDAI, NUI, CI × 106, F0I);	V1. V2. F12. F23. EPS. LAMBDAI. NUI. CI. F0I. FI:	
REAL CAPID, ND, TR, U, TM, SP, TS, TAUS, TH, TF, A1, A2; COMMENT: DECLARATION OF VARIABLES.; REAL T, DELT, TIC, ID, F, FDOTC, PHIDOTC1, PHIDOTMAC, PHIDOTEC, PHIDOTIC, PHIDOTMAPR, PHIDOTEPR, PHIDOTIPR, PHIC, PHIC1, PHIC2, DELPHIC, CO, THETAS, PHIDC; COMMENT: DECLARATION OF MISCELLANEOUS.; REAL NV, TSCALE, FSCALE, PSCALE; INTEGER LINES, COUNT, CTS, K; BOOLEAN P; LABEL STARTCORE, STARTCKT, SWITCHING, GUESS, LOOP, GUITCKT, PLOTE, GUIT; REAL ARRAY PHIDTA, GDTA, TIMEA [0:500]; COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.; FILE CR 0 (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO, FB, LAMBDAI, NUI, CI, F0I); LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108, PHIS × 108, HA, Hq, HN, LAMBDA, FOPP, NU, ROP, FO, FB, EPS × 109, LAMBDAI, NUI, CI × 106, F0I);	COMMENT: DECLARATION OF CIRCUIT PARAMETERS.:	
COMMENT: DECLARATION OF VARIABLES.; REAL T, DELT, TIC, ID, F, FDOTC, PHIDOTC1, PHIDOTMAC, PHIDOTEC, PHIDOTIC, PHIDOTMAPR, PHIDOTEPR, PHIDOTIPR, PHIC, PHIC1, PHIC2, DELPHIC, CO, THETAS, PHIDC; COMMENT: DECLARATION OF MISCELLANEOUS.; REAL NV, TSCALE, FSCALE, PSCALE; INTEGER LINES, COUNT, CTS, K; BOOLEAN P; LABEL STARTCORE, STARTCKT, SWITCHING, GUESS, LOOP, QUITCKT, PLOTE, QUIT; REAL ARRAY PHIDTA, QDTA, TIMEA [0 : 500]; COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.; FILE CR 0 (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, O22 LAMBDA, FOPP, NU, ROP, F0, FB, LAMBDAI, NUI, CI, F0I); LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108, PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, EPS × 109, 025 LAMBDAI, NUI, CI × 106, F0I);	REAL CAPIDE NO. TRE U. THE SPE TS. TAUSE THE TER ALE AST	
REAL T, DELT, TIC, ID, F, FDOTC, PHIDOTC, PHIDOTC1, PHIDOTMAC, PHIDOTEC, PHIDOTIC, PHIDOTMAPR, PHIDOTEPR, PHIDOTIPR, PHIC, PHIC1, PHIC2, DELPHIC, CO, THETAS, PHIDC; COMMENT: DECLARATION OF MISCELLANEOUS.; REAL NV, TSCALE, FSCALE, PSCALE; INTEGER LINES, COUNT, CTS, K; BOOLEAN P; LABEL STARTCORE, STARTCKT, SWITCHING, GUESS, LOOP, QUITCKT, PLOTE, QUIT; REAL ARRAY PHIDTA, QDTA, TIMEA [O: 500]; COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.; FILE CR O (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO, FB, LAMBDAI, NUI, CI, FOI); LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108, PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO, FB, EPS × 109, LAMBDAI, NUI, CI × 106, FOI);	COMMENT: DECLARATION OF VARIABLES.	
PHIDOTEC, PHIDOTIC, PHIDOTMAPR, PHIDOTEPR, PHIDOTIPR, PHIC, PHIC1, PHIC2, DELPHIC, CO, THETAS, PHIDC; COMMENT: DECLARATION OF MISCELLANEOUS.; REAL NV, TSCALE, FSCALE; INTEGER LINES, COUNT, CTS, K; BOOLEAN P; LABEL STARTCORE, STARTCKT, SWITCHING, GUESS, LOOP, GUITCKT, PLOTE, GUIT; REAL ARRAY PHIDTA, QDTA, TIMEA [0 : 500]; COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.; FILE CR 0 (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, 022) LAMBDA, FOPP, NU, ROP, F0, FB, LAMBDAI, NUI, CI, F0I); LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108, 024) PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, EPS × 109, 025 LAMBDAI, NUI, CI × 106, F0I);		
PHIC2, DELPHIC, CO, THETAS, PHIDC; COMMENT: DECLARATION OF MISCELLANEOUS.; REAL NV, TSCALE, FSCALE; INTEGER LINES, COUNT, CTS, K; BOOLEAN P; LABEL STARTCORE, STARTCKT, SWITCHING, GUESS, LOOP, GUITCKT, PLOTE, GUIT; REAL ARRAY PHIDTA, QDTA, TIMEA [0 : 500]; COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.; FILE CR 0 (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, 022) LAMBDA, FOPP, NU, ROP, F0, FB, LAMBDAI, NUI, CI, F0I); LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108, 024) PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, EPS × 109, 025 LAMBDAI, NUI, CI × 106, F0I);	PHIDATEC BUILDITY BUILDING PHIDATES PHIDATES	
COMMENT: DECLARATION OF MISCELLANEOUS.; REAL NV. TSCALE, FSCALE; INTEGER LINES, COUNT, CTS, K; BOOLEAN P; LABEL STARTCORE, STARTCKT, SWITCHING, GUESS, LOOP, QUITCKT, PLOTE, QUIT; REAL ARRAY PHIDTA, QDTA, TIMEA [0 : 500]; COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.; FILE CR 0 (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, O22 LAMBDA, FOPP, NU, ROP, F0, FB, LAMBDAI, NUI, CI, F0I); LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108, PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, EPS × 109, D25 LAMBDAI, NUI, CI × 106, F0I);	PHICA DEL PHICA CO THE PRINCIPAL PHICA PHICA PHICA PHICA	
REAL NV. TSCALE, FSCALE; D14 INTEGER LINES, COUNT, CTS, K; D15 BOOLEAN P; LABEL STARTCORE, STARTCKT, SWITCHING, GUESS, LOOP, QUITCKT, PLOTE, QUIT; D17 REAL ARRAY PHIDTA, QDTA, TIMEA [0 : 500]; D18 COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.; D19 FILE CR 0 (2, 10); FILE F1 1 (2, 15); D20 LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, D22 LAMBDA, FOPP, NU, ROP, F0, FB, LAMBDAI, NUI, CI, F0I); D23 LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108, D24 PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, EPS × 109, D25 LAMBDAI, NUI, CI × 106, F0I); D25	COMMENTS DELPHIC: U. INETAS, PHIDC:	
INTEGER LINES, COUNT, CTS, K; BOOLEAN P; LABEL STARTCORE, STARTCKT, SWITCHING, GUESS, LOOP, QUITCKT, PLOTE, QUIT; REAL ARRAY PHIDTA, QDTA, TIMEA [0 : 500]; COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.; FILE CR 0 (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, 1021 LAMBDA, FOPP, NU, ROP, F0, FB, LAMBDAI, NUI, CI, F0I); LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108, PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, EPS × 109, LAMBDAI, NUI, CI × 106, F0I);	COMMENT: DECLARATION OF MISCELLANEOUS.	013
BOOLEAN P; LABEL STARTCORE, STARTCKT, SWITCHING, GUESS, LOOP, QUITCKT, PLOTE, QUIT; REAL ARRAY PHIDTA, QDTA, TIMEA [0 : 500]; COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.; FILE CR 0 (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, 1022 LAMBDA, FOPP, NU, ROP, F0, FB, LAMBDAI, NUI, CI, F0I); LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108, PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, EPS × 109, LAMBDAI, NUI, CI × 106, F0I);	REAL NV ISCALE, PSCALE;	014
BOOLEAN P; LABEL STARTCORE, STARTCKT, SWITCHING, GUESS, LOOP, QUITCKT, PLOTE, QUIT: REAL ARRAY PHIDTA, QDTA, TIMEA [0:500]; COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.; FILE CR 0 (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, 1022 LAMBDA, FOPP, NU, ROP, F0, FB, LAMBDAI, NUI, CI, F0I); LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108, PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, EPS × 109, LAMBDAI, NUI, CI × 106, F0I); 105	INTEGER LINES, COUNT, CTS, KI	015
LABEL STARTCORE, STARTCKT, SWITCHING, GUESS, LOOP, QUITCKT, PLOTE, QUIT: REAL ARRAY PHIDTA, QDTA, TIMEA [0 : 500]; COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.; FILE CR 0 (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, LAMBDAI, NUI, CI, F0I); LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108, PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, EPS × 109, LAMBDAI, NUI, CI × 106, F0I);	= - = =	016
REAL ARRAY PHIDTA, QDTA, TIMEA [0 : 500]; COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.; FILE CR 0 (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, LAMBDAI, NUI, CI, F0I); LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108, PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, EPS × 109, LAMBDAI, NUI, CI × 106, F0I);	LABEL STARTCORE, STARTCKT, SWITCHING, GUESS, LOOP, QUITCKT, PLOTE, QUIT:	
COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.: FILE CR 0 (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, 022 LAMBDA, FOPP, NU, ROP, F0, FB, LAMBDAI, NUI, CI, F0I); LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108, 024 PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, EPS × 109, 025 LAMBDAI, NUI, CI × 106, F0I);	REAL ARRAY PHIDTA, QDTA, TIMEA [0 : 500];	
FILE CR 0 (2, 10); FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, 022 LAMBDA, FOPP, NU, ROP, F0, FB, LAMBDAI, NUI, CI, F0I); LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108, 024 PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, EPS × 109, 025 LAMBDAI, NUI, CI × 106, F0I);	COMMENT: DECLARATION OF FILE, LISTS, AND FORMATS.:	
FILE F1 1 (2, 15); LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, LAMBDAI, NUI, CI, F0I); LIST COREPARAMETERL (CORENAME, LI × 103, L0 × 103, PHIR × 108, PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, EPS × 109, LAMBDAI, NUI, CI × 106, F0I);	FILE CR 0 (2, 10);	
LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN, 022 LAMBDA, FOPP, NU, ROP, F0, FB, LAMBDAI, NUI, CI, F0I); 023 LIST COREPARAMETERL (CORENAME, LI × 103, L0 × 103, PHIR × 108, 024 PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, F0, FB, EPS × 109, 025 LAMBDAI, NUI, CI × 106, F0I); 026		
LAMBDA, FOPP, NU, ROP, FO, FB, LAMBDAI, NUI, CI, FOI); LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108, PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO, FB, EPS × 109, LAMBDAI, NUI, CI × 106, FOI);		
LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108, 024 PHIS × 108, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO, FB, EPS × 109, 025 LAMBDAI, NUI, CI × 106, FOI); 026	I AMBRIA - FROD - MIL BOD - FR - LA MORAY - AHIT - CT -	
PHIS × 198, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO, FB, EPS × 189, 025 LAMBDAI, NUI, CI × 186, FOI); 026	LIST CORPORAMETERS (CORPORATE LT & 107 LO & 107 CT)	
LAMBDAI, NUI, CI × 106, FOI);	DATE W 108 MA MA MA MA MARIA FOR MA 108 MA 108 MA 108 MA 108 MA	
LIST CIRCUITPARAMETERS (CAPID THASPADELT ATSCALE ASSCALE ADSCALE ADSCA	(AMBDA: AND CT AND CONTROL OF THE CO	
LASI LIKUUIIPAKAMPIPKULADIDATMAGDADELTATECALE, ECCALE, BOCALE, BOCALE	LANGUALY NULF (I × 186) PULF	026
U27	LIST CIRCUITPARAMETERS (CAPID, TM, SP, DELT, TSCALE, FSCALE, PSCALE, P);	027
LIST CIRCUITPARAMETERL (CAPID, ND, TR x 196, U x 19-6, TM x 196, 028	LIST CIRCUITPARAMETERL (CAPID, ND, TR × 106, U × 10-6, TM × 106,	028
SP × 10-6);	2h x 18-91	

LIST OUTPUTVARIABLES (T × 106, ID, PHIDOTEC, PHIDOTIC, PHIDOTMAC,	030 031
PHIDOTC, PHIC × 108, PHIDC × 108, F, CTS); FORMAT COREPARAMETERH ("CORE ", A6, X4, "LI=", F8.3, X4, "LO=",	032
FORMAT COREPARAMETERH ("CORE ") AG, ", F8.3, X4, "HA=", F8.3, X4, "HQ F8.3, X4, "PHIR=", F8.3, X4, "PHIS=", F8.3, X4, "HQ	033
F8.3, X4, "PHIRE", F8.3, X4, "F113- =", F8.3, X4, "HN=", F8.3 / X15, "LAMBDA=", F8.5, X4, "F0PP=", F8.3,	034
THE MANIEM FO TO THE TOPOLOGICAL PROPERTY AND	035
F8.3 / X15, "EPS=", F8.4, "0-9", X4, "LAMBDAI=", F8.5, X4, "NUI=",	036
	037
CONMAT CINCUITEDADAMETEDA (MORTVE PARAMETEKS") XXI "UMFAU-", FO-TY	038
X4, "ND=", I2, X4, "TR=", F8.3, X4, "U=", F6.2, "Q6", X4, "TM=",	039
mcn-m Ec 2. MASY /) }	040
TARMAT AUTOUTUEADING (/ YEA TIME XII) "IU") XD) "POLUCIEC") ATV "FOL	041
DOTIC", X4, "PHIDOTMAC", X4, "PHIDOTC", X8, "PHIC", X7, "PHIDC", X9,	042
MEN NO MOTER /\!	043
FORMAT OUTPUTFORMAT (F9.3, F12.3, 4 F12.5, 2 F12.2, F12.3, I10);	044
COMMENT: DECLARATION OF PROCEDURES.;	045

PROCEDURE $\dot{\phi}_{\epsilon}(\dot{F}, \Delta t, NV, \dot{\phi}'_{\epsilon})$, APPENDIX A PROCEDURE $\dot{\phi}_{i}(F, t, T_{i}, \dot{\phi}'_{i})$, APPENDIX B PROCEDURE $\dot{\phi}_{ma}(F, \phi, \phi_{d}, \dot{\phi}'_{ma})$. APPENDIX C

```
TANH0001
REAL PROCEDURE TANH (X1);
                                                                         TANH0002
VALUE X1;
                                                                         TANH0003
REAL X1
                                                                          TANH0004
BEGIN REAL Y;
                                                                          TANHOOO5
   Y + EXP (X1 + X1)
                                                                          TANH0006
   TANH + (Y - 1.0) / (Y + 1.0)
                                                                          TANH0007
END TANHI
                                                                          SECH0001
REAL PROCEDURE SECH (X);
                                                                          SECH0002
VALUE XI
                                                                          SECH0003
                                                                          SECH0004
REAL XI
                                                                          SECH0005
BEGIN REAL UI
   U + EXP(X)I
                                                                          SECH0006
   SECH + 2 / (U + 1 / U)
                                                                          SECH0007
END SECHI
COMMENT: READ INPUT - DATA CARDS, COMPUTE CORE AND CIRCUIT
                                                                                046
                                                                                047
PARAMETERS, AND PRINT HEADING.;
                                                                                048
STARTCORE : READ (CR. /. COREPARAMETERS) [QUIT]
 STARTCKT : READ (CR. /, CIRCUITPARAMETERS) [QUITCKT];
                                                                                049
                                                                                050
 V1 + (PHIS - PHIR) / ((LO - LI) × HA);
V2 + (PHIS + PHIR) × HQ / ((LO - LI) × HN);
                                                                                051
                                                                                052
 F12 + HQ × LI;
                                                                                053
 F23 + HQ × LO;
                                                                                054
 EPS + V1 x LN (LO / LI);
                                                                                055
 NV + 0.001 × EPS × SP;
                                                                                056
 ND + 1;
                                                                                057
 TR + 2 × TM;
                                                                                058
 U + 2 x SP / CAPID;
                                                                                059
 A1 + (SP - CAPID / TM) / TM + 2;
                                                                                060
 A2 + (1.5 x CAPID / TM - SP) / TMF
                                                                                061
 TS + 900 × DELT#
                                                                                 062
 TAUS + PHIR / (0.3 × ROP × ND × CAPID);
                                                                                 063
 WRITE (F1 [PAGE]);
                                                                                 064
 WRITE (F1. COREPARAMETERH, COREPARAMETERL);
  WRITE (F1, CIRCUITPARAMETERH, CIRCUITPARAMETERL);
                                                                                 065
                                                                                 066
  WRITE (F1, OUTPUTHEADING);
                                                                                 067
  COMMENT: INITIALIZE VARIABLES AND PARAMETERS.
```

```
T + TIC + 0;
                                                                                 068
   ID + F + 0 ;
                                                                                 069
   PHIC2 + PHIC1 + PHIC + PHIDC + -PHIR ;
                                                                                 070
   PHIDOTC1 + PHIDOTC + PHIDOTEC + PHIDOTIC + PHIDOTMAC + 0 ;
                                                                                 071
   LINES +10;
                                                                                072
   K +10#
                                                                                 073
   COUNT + 01
                                                                                074
    WRITE(F1.OUTPUTFORMAT.OUTPUTVARIABLES) ;
                                                                                075
   COMMENT: COMPUTE VARIABLES DURING SWITCHING TIME.;
                                                                                076
   SWITCHING: T + T + DELT;
                                                                                077
   COUNT + COUNT + 1;
                                                                                078
    ID + IF T < TM THEN T * 2 × (A1 × T + A2) ELSE
                                                                                079
         CAPID × (1 + TANH (U × (T - TM))) / 2;
                                                                                080
   F + ND × ID;
                                                                                081
   FI + FOI × TANH (F/FOI);
                                                                                082
   FDOTC + IF T < TM THEN ND x T x (3 x A1 x T + 2 x A2) ELSE
                                                                                083
      CAPID \times ND \times U \times SECH (U \times (T - TM)) * 2 / 2;
                                                                                084
                                                                                085
   GUESS: PHIC + PHIC2 + 2 × DELT × PHIDOTC1;
                                                                                086
   LOOP: CTS + CTS + 11
                                                                                087
   PHIDOTMAC + PHIDOTMA (F, PHIC, PHIDC, PHIDOTMAPR);
                                                                                088
   PHIDOTEC + PHIDOTE (FDOTC, DELT, NV, PHIDOTEPR);
                                                                                089
   PHIDOTIC + PHIDOTI (F, T, TIC, PHIDOTIPR);
                                                                                090
   PHIDOTC + PHIDOTMAC + PHIDOTEC + PHIDOTIC#
                                                                                091
   DELPHIC + PHIC1 + DELT × (PHIDOTC + PHIDOTC1) / 2 - PHIC;
                                                                                092
   PHIC + PHIC + DELPHIC;
                                                                                093
   IF CTS = 1 THEN CO + DELPHIC:
                                                                                094
   IF CTS = 5 THEN
                                                                                095
   BEGIN THETAS + DELPHIC / CO;
                                                                                096
      IF 0.9 < ABS (THETAS) THEN GO TO GUESS:
                                                                                097
      DELPHIC + 0
                                                                                098
   END:
                                                                                099
   IF ABS (DELPHIC) > 0.001× PHIR × DELT / TAUS AND CTS ≠ 6 THEN 60
                                                                                100
   TO LOOP:
                                                                                101
   PHIC2 + PHIC1;
                                                                                102
   PHIC1 + PHIC;
                                                                                103
   PHIDOTC: + PHIDOTC;
                                                                                104
   COMMENT: PRINT OUTPUT.;
                                                                                105
   IF P THEN K + IF T < TR THEN 2 ELSE 10 #
                                                                                106
   IF COUNT MOD K = 0 THEN
                                                                                107
   BEGIN
                                                                                108
      IF LINES MOD 50 = 0 THEN
                                                                                109
      BEGIN WRITE (F1 [PAGE]);
                                                                                110
         WRITE (F1, OUTPUTHEADING)
                                                                                111
                                                                                112
      WRITE (F1, OUTPUTFORMAT, OUTPUTVARIABLES);
                                                                                113
      LINES + LINES + 1
                                                                                114
   END:
                                                                                115
   IF T ≤ TS THEN GO TO SWITCHING ;
                                                                                116
   GO TO STARTCKT ;
                                                                                117
   QUITCKT : CLOSE (CR. SAVE);
                                                                                118
   GO TO STARTCORE;
                                                                                119
   QUIT:
                                                                                120
END.
                                                                                121
```

A sample of input data:

```
"E-6 ", 22.190-3, 23.540-3, 3.450-8, 3.7260-8, 310.0, 35.0, 30.0, 0.069, 0.95, 1.30, 0.1132, 1.45, 3.12,0.01200,1.300,0.2450-6,0.5500, 0.60, 0.05920-6, 10.1506,0.40-9, 2506, 5, 400, 0, 0.60, 0.05920-6, 10.1506,20-9, 506, 5, 400, 1,
```

APPENDIX F

COMPUTER PROGRAM FOR LOADED CORE

Language: ALGOL 60

Program Description: Computes i_D , $\dot{\phi}$, ϕ , ϕ_d , F, \dot{q} , and V_d versus t for given core, circuit, and drive parameters.

Identifiers:

(1) Analytical identifiers

Identifier	Symbol	Identifier	Symbol
С	\boldsymbol{C}	NU	ν
CAPID	I_{D}	PHIC	ϕ
DELQD	$\Delta \dot{m{q}}$	PHIC1	ϕ_{n-1}
DELT	Δt	PHIC2	ϕ_{n-2}
DPHDTDFC	ϕ'	PHIDC	$\phi_{\mathbf{d}}$
ED	e_{d}	PHIDOTC	$\overset{\cdot}{\phi}$
EK	E_{k}^{-}	PHIDOTC1	ϕ_{n-1}
F	\vec{F}	PHIR	ϕ_r^{n-1}
FB	F_{B}	PHIS	ϕ_{s}
FJ	$f_{n(j)}$	Q	q
FJPR	$f_{n(j)}^{\prime\prime}$	Q1	q_{n-1}
F0	F_0	QD	\dot{q}^{n-1}
F0PP	$F_0^{"}$	QD1	\dot{q}_{n-1}
HA	H_a	QD2	\dot{q}_{n-2}
HN	$H_{\mathbf{p}}$	QDD	Ÿ n - 2
НQ	$H_{q}^{''}$	QDD1	Ÿ _{n - 1}
ID	i_{D}	R	R
Ι0	I_0	RD	R_{d}
L	L	RL	R_L^a
LAMBDA	λ	ROP	ρ_{p}
LI	l_{i}	T	t^{p}
LO	l	TAUS	$ au_{s}$
NC	N_c	TR	T_r^s
ND	N_{D}^{c}		· r

(2) Auxiliary identifiers

Identifier	Description
CIRCUITPARAMETERH	Format for the list CIRCUITPARAMETERL.
CIRCUITPARAMETERL	List of circuit parameters (N_c , R_L , L , C , R_d , I_0 ,
	E_k , I_D , N_D , and T_r).
CIRCUITPARAMETERS	List of circuit parameters (same as above) for
	input-data cards.
CORENAME	Core name, e.g. J-1.
COREPARAMETERH	Format for the list COREPARAMETERL.
COREPARAMETERL	List of core parameters (Core name, l_i , l_o , ϕ_r , ϕ_s ,
	H_a , H_q , H_n , λ , F_0'' , ν , ρ_p , F_0 , and F_B).
COREPARAMETERS	List of core parameters (same as above) for
	input-data cards.
COUNT	Index number of n th $\triangle t$ during switching.
CTS	Index number of j th iteration for each n th $\triangle t$.
GUESS	Label of location where initial approximation of
	ϕ is made for each n th Δt .
K	Index number of automatically plotted set of
	output.
LINES	Index number of printed line
LOOP	Label of location from where iterative computation
	is repeated for each n th $ riangle t$.
OUTPUTFORMAT	Format for the list OUTPUTVARIABLES.
OUTPUTHEADING	Format for output column heading.
OUTPUTVARIABLES	List of results (t , i_{D} , $\dot{\phi}$, ϕ , ϕ_{d} , F , \dot{q} , e_{d} + \dot{q} R_{d} ,
	j_{max}).
P	$1/\ddot{q}_{j}$ if $\ddot{q}_{j} \neq 0$, zero otherwise.
P1	$1/(\dot{q}_{j-1} - \dot{q}_{n-1})$ if $\dot{q}_{j-1} \neq \dot{q}_{n-1}$, zero otherwise.
QUIT	Label of location where computation terminates
S	1/C if C is finite, zero otherwise.
START	Label of location where computation starts for
	given core and circuit parameters.
SWITCHING	Label of location where computation starts for
	each n th Δt .
XSCALE	Time scale, used in automatic plotting of resulting
	waveforms.
YSCALE	$\dot{\phi}$ scale, used in automatic plotting of $\dot{\phi}(t)$.
ZSCALE	\dot{q} scale, used in automatic plotting of $\dot{q}(t)$.

Program:

LOADED CORE		
BEGIN COMMENT: DECLARE CORE PARAMETERS, CIRCUIT PARAMETERS, VARIA		001
AND AUXILIARY IDENTIFIERS.	BLES	002
REAL LI, LO, PHIR, PHIS, HA, HQ, HN, LAMBDA, FOPP, NU, ROP, FO		003
THE THE PROPERTY OF THE PROPER	• FB	004
REAL RL. L. C. RD. IO. TR. CAPID. EK. TAUS. R. S. P. P1:		005
REAL TA DELTA PHICA PHICA PHICA PHICA PHICA		006
REAL T, DELT, PHIC, PHIC1, PHIC2, PHIDOTC, PHIDOTC1, ID, F, Q,	Q1 •	007
QD, QD1, QD2, QDD, QDD1, DELQD, PHIDC, DPHDTDFC, DEPHIDOTC, DEED, FJ, FJPR, XSCALE, YSCALE, ZSCALE, 6, 61;	aD •	800
INTEGER LINES, CTS, COUNT, NC, ND, K;		009
ALPHA CORENAME;		010
		011
LABEL START, SWITCHING, GUESS, LOOP, QUIT;		012
COMMENT: DECLARE INPUT / OUTPUT.; FILE IN CR 0(2, 10);		013
		014
FILE OUT F1 4(2, 15);		015
LIST COREPARAMETERS (CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN,		016
LAMBDA, FOPP, NU, ROP, FO, FB);		017
LIST COREPARAMETERL (CORENAME, LI × 103, LO × 103, PHIR × 108,	HIS	018
* 100, HA, HG, HN, LAMBDA, FOPP, NJ, ROP, FG, FR):		019
LIST CIRCUITPARAMETERS (NC. RL. L. C. RD. 10, EK. CAPID. ND. TR) ;	020
LIST CIRCUITPARAMETERL(NC, RL, L x 106, C x 106, RD, IO x 106,	EK.	021
CAPIDA NDA TR X 106);		022
LIST OUTPUTVARIABLES (T × 106, ID, PHIDOTC, PHIC × 108, PHIDC ×	198	023
* * * * * * * * * * * * * * * * * * *		024
FORMAT COREPARAMETERH ("CORE ", A6, X4, "LI=", F8.3, X4, "LO=",		025
F8.3, X4, "PHIR=", F8.3, X4, "PHIS=", F8.3, X4, "HA=", F8.3, X4		026
"''''''''''' F8.3/ X4/ "HN="/ F8.3/ X15/ "LAMBDA="/ F8.5. Y4. WEODD=	± * •	027
F8.3, X4, "NU=", F8.3, X4, "ROP=", F8.3, X4, "F0=", F8.3, X4,		028
"FB=", F8.3 /);		029
FORMAT CIRCUITPARAMETERH("CIRCUIT", X8, "NC=", I2, X4, "RL=", F	·8•3	030
, X4, "L=", F8.3, X4, "C=", F8.3, X4, "RD=", F8.3, X4, "In=", E	8.3	031
/ X4, "EK=", F8.5 / "PARAMETERS", X5, "CAPID=", F8.3, Y4, WND="	•	032
I2, X4, "TR=", F8.3 /);		033
FORMAT OUTPUTHEADING(/ X6, "T", X11, "ID", X7, "PHIDOTC", X7,		034
"PHIC", X7, "PHIDC", X9, "F", X11, "QD", X10, "VD", Y9, "CTC"	⁷);	035
FURMAT OUTPUTFORMAT(F9.3, 2 F12.3, 2 F12.2, 3 F12.3, 11n):		036
COMMENT: PROCEDURES USED BY THIS PROGRAM ARE MIN, MAX, AND PHID	OT.	037
;		038
REAL PROCEDURE MIN(A,B);	MIN	01
VALUE A.B; REAL A.B;	MIN	02
BEGIN MIN + IF A < B THEN A ELSE B END MIN ;	MIN	03
DEAL Become we will be		
REAL PROCEDURE MAX(A,B);	MAX	01
VALUE A.B; REAL A.B;	MAX	02
BEGIN MAX + IF A > B THEN A ELSE B END MAX ;	MAX	03

PROCEDURE $\dot{\phi}(F,\phi,\phi_d,\dot{\phi}')$, APPENDIX D-1

COMMENT: READ INPUT - DATA CARDS AND PRINT HEADINGS.;	039
READ(CR, /, COREPARAMETERS);	
	040
START: READ(CR, /, CIRCUITPARAMETERS)[QUIT];	041
WRITE(F1[PAGE]);	042
WRITE(F1, COREPARAMETERH, COREPARAMETERL);	
WRITE(F1, CIRCUITPARAMETERH, CIRCUITPARAMETERL);	043
	044
WRITE(F1, OUTPUTHEADING);	OAS

```
046
LINES + 61
                                                                            047
COUNT + 01
                                                                            048
K + 01
                                                                            049
COMMENT: INITIALIZE VARIABLES AND PARAMETERS.;
                                                                            050
PHIC2 + PHIC1 + - PHIR;
                                                                            051
QD2 + QD1 + QDD1 + Q1 + PHIDOTC1 + 0;
                                                                            052
S + IF C < 1910 THEN 1 / C ELSE 0;
                                                                            053
R + RL + RD#
TAUS + IF TR ≤ 10-7 THEN 2 × PHIR /(0.3 × ROP ×(ND × CAPID - FOPP)
                                                                            054
) ELSE SQRT(PHIR × TR /(0.15 × ROP × ND × CAPID));
                                                                            055
                                                                            056
DELT + TAUS / 200;
                                                                             057
 T + TR × FOPP /(ND × CAPID);
COMMENT: COMPUTE VARIABLES DURING SWITCHING TIME.
                                                                             058
                                                                             059
SWITCHING: T + T + DELT;
                                                                             060
COUNT + COUNT + 1;
                                                                             061
ID + CAPID × MIN(T / TR, 1);
                                                                             062
CTS + 0#
GUESS: PHIC + PHIC2 + 2 × DELT × PHIDOTC1;
                                                                             063
                                                                             064
 QD + QD2 + 2 × DELT × QDD1;
                                                                             065
 IF IO < 1010 THEN QD + MAX(QD, 0);
                                                                             066
 Q + Q1 + DELT ×(QD + QD1) / 2;
                                                                             067
 LOOP: 61 . G!
                                                                             068
 CTS + CTS + 11
                                                                             069
 F + ND × ID - NC × QD;
 DEPHIDOTC + PHIDOT(F, PHIC, PHIDC, DPHDTDFC) - PHIDOTC;
                                                                             070
                                                                             071
 PHIDOTC + PHIDOTC + DEPHIDOTC;
 PHIC + PHIC1 + DELT ×(PHIDOTC + PHIDOTC1) / 2;
                                                                             072
                                                                             073
 ED + EK × LN(QD / IO + 1);
                                                                             074
 IF L # 0 THEN
                                                                             075
 BEGIN QDD +(NC × PHIDOTC - Q / C - R × QD - ED) / LI
                                                                             076
    DEQD + QD1 + DELT ×(QDD + QDD1) / 2 - QD;
                                                                             077
 END!
                                                                             078
 IF L = 0 THEN
                                                                             079
 BEGIN QDD +(QD - QD1) / DELT;
                                                                             080
    FJ + R × QD + ED + S × Q - NC × PHIDOTC;
                                                                             081
    IF QDD # 0 THEN P + 1 / QDD ELSE P + 0;
    FJPR + R + EK /(QD + 10) + S × QD × DELT / 2 + DPHDTDFC × NC *
                                                                             082
                                                                             083
    21
                                                                             084
    DEQD + - FJ / FJPR;
                                                                              085
 END!
                                                                              086
  QD + QD + DEQD;
                                                                              087
  IF IO < 1010 THEN QD + MAX(QD, 0);
  G + R × QD + ED + S × Q + L × QDD - NC × PHIDOTC;
                                                                              880
                                                                              089
  IF SIGN(G) # SIGN(G1) THEN
                                                                              090
  BEGIN QD + QD - 0.5 × DEQD;
                                                                              091
     G + G - 0.5 × DEQD × RI
                                                                              092
                                                                              093
  Q + Q1 + DELT ×(QD + QD1) / 2;
  IF(ABS(DEQD) > 0.001 × QD AND CTS < 10) THEN GO TO LOOP;
                                                                              094
                                                                              095
  PHIC2 + PHIC1;
                                                                              096
  PHIC1 + PHIC;
                                                                              097
  PHIDOTC1 + PHIDOTC;
                                                                              098
  QD2 + QD1;
                                                                              099
  QD1 + QD;
                                                                              100
  Q1 + Q1
                                                                              101
  QDD1 + QDD;
                                                                              102
  COMMENT PRINT OUTPUT ;
                                                                              103
  IF COUNT MOD 20 = 0 THEN
                                                                              104
  BEGIN IF LINES MOD 50 = 0 THEN
                                                                              105
      BEGIN WRITE(F1[PAGE]);
                                                                              106
         WRITE(F1, OUTPUTHEADING)
                                                                              107
      END:
                                                                              108
      WRITE(F1, OUTPUTFORMAT, OUTPUTVARIABLES);
                                                                              109
      LINES + LINES + 1
```

END; IF PHIDOTC # 0 GO TO START; QUIT: END.	THEN GO TO SWITCHING:	110 111 112 113

A sample of input data:

"J-1 ",7.180-3,11.580-3,31.00-8,33.480-8,250.0,26.0,22.50,1.64,	
U-2/-1-45-2-27-0-55-1-20-	
2.1.580,1.000-6,1.000020,0.00,1.0020,0.0000,1.54,1,0.100-6, 2.0.131,0.380-6,0.2530-6,0.00,1.0020,0.0000,2.28,1,0.100-6,	SRL
2.0.131.0.389-6.0.2539-6.0.74.2.79-6.0.0833.1.80.1.0.109-6.	SRLC SRLCD

APPENDIX G

COMPUTER PROGRAM FOR CORE-DIODE-TRANSISTOR BINARY COUNTER USING A SIMPLE METHOD OF SOLUTION

Language: ALGOL 60

 $\frac{\text{Program Description:}}{\boldsymbol{\dot{\phi}_{\epsilon\,1}}, \text{ and } \boldsymbol{\dot{\phi}_{\epsilon\,2}} \text{versus } t.} \quad \boldsymbol{\dot{i}_{L}}, \ \boldsymbol{i_{s}}, \ \boldsymbol{F_{1}}, \ \boldsymbol{\phi_{1}}, \ \boldsymbol{\dot{\phi}_{1}}, \ \boldsymbol{F_{2}}, \ \boldsymbol{\phi_{2}}, \ \boldsymbol{\dot{\phi}_{2}}, \ \boldsymbol{i_{d}}, \ \boldsymbol{V_{d}}, \ \boldsymbol{\dot{\phi}_{d}}, \ \boldsymbol{V_{d}}, \ \boldsymbol{\dot{\phi}_{d}}, \ \boldsymbol{\dot{\phi}$

Identifiers:

(1) Analytical identifiers

Identifier	Symbol	Identifier	Symbol
CAPIS	I_{s}	GJ	σ
D	D	GJM1	g (j)
DELID	δi_d	GPRID	$\frac{g}{\partial g/\partial i}$
DELIS	δi _s	GPRIS	∂g/∂i°
DELT	Δ t	НА	H_a
EK	E_{k}	HN	H_{n}^{a}
EPS	ϵ	HQ	H_{q}^{n}
FB	F_B	IC	I^{q}_{c}
FJ	$f_{\cdot(j)}$	ID	$i \frac{c}{d}$
FJM1	$f_{(j-1)}$	IDM1	i d (-1)
FPRID	$\partial f/\partial i_d$	IDM2	$i_{d(-2)}$
FPRIS	$\partial f/\partial i_s$	IL	i_L
F0	F_0	ILDOT	di_L/dt
F0 PP	F_0''	ILDOTM1	$di_L/dt_{(-1)}$
F1		ILM1	$i_{L(-1)}$
FlDOT	$\overset{F}{\mathring{F}}_{1}$	ILM2	i L (-1)
F1M1	$F_{1(-1)}$	IS	i s
F2	\boldsymbol{F}_2	ISM1	i _{s (-1)}
F2DOT	$\overset{F}{\overset{2}{F}_{2}}$	ISM2	$i_{s(-2)}$
F2M1	$F_{2(-1)}$	10	I_0
F12	F_{12}	L	L
F23	F 23	LAMBDA	λ

LI l_i PHIR ϕ_r LO l_o PHIS ϕ_s NB1 N_{B1} PHI1 ϕ_1 NB2 N_{B2} PHI1M1 $\phi_{1(-)}$	2)
LO l_o PHIS ϕ_s NB1 N_{B1} PHI1 ϕ_1	2)
NB1 N_{B1} PHI1 φ_1	2)
	2)
NB2 N_{B2} PHI IMI φ_1 (-	1)
NS1 N_{s1} PHI 1M2 $\phi_{1(-}$	1)
NS2 N_{s2} PHI2 ϕ_2	
NU ν PHI2M1 ϕ_{2} (-	
PHIDOTE: ϕ_{21} PHI2M2 ϕ_{21}	2)
PHIDOTE2 $\phi_{\epsilon 2}$ RD R_d	!
PHIDOTEPRI ϕ'_{I} .	
PHIDOTEPR2 ϕ'_{ϵ_2} R1 R_1	L
PHIDOTMA1 $\dot{\phi}$, R2 κ_2	
PHIDOTMA2 $\dot{\phi}$ R3 R3	
PHI DOTMARD1 &' R4	4
mai	
TAUS τ	s
put pater $\dot{\phi}'$ TIN T	n
PHIDOTSTR1 $\dot{\sigma}^*$ TI1 T_i	1
DUIDOTSTR2 $\dot{\phi}^*$ TI2	2
PHIDOT1 $\dot{\phi}_1$ TR T	r
PUIDOTIMI &	
PULDOT2 ϕ VD V	d
V V	1
2(-1)	2
PHIMA1 ϕ_{mal} V2 PHIMA2 ϕ_{ma2}	

(2) Auxiliary identifiers

Identifier	Description
CF	Number of convergence failures.
CORE	Core name.
COUNT	Index number of Δ t .
CTS	Index of j th iteration.
EXIT	Label of location where computation terminates.
FMT1	Format for the list LIST1.
FMT2	Format for the list LIST2.
FMT3	Format for the list LIST3.
FMT4	Format for output-column heading.

<u>Identifier</u>	Description
GUESS	Label location where predictions are made.
LINES	Index number of printed line.
LIST1	List of core parameters.
LIST2	List of circuit parameters.
LIST3	List of results $(t, i_L, i_s, F_1, \phi_1, \phi_1, F_2,$
LOOP	ϕ_2 , $\dot{\phi}_2$, i_d , V_d , $\dot{\phi}_{\epsilon1}$, $\dot{\phi}_{\epsilon2}$, j_{max} , CF). Label of location where iterative computation
	begins.
NV	Negligible value of $\dot{\phi}_{\epsilon}.$
SWITCHING	Label of location where computation starts
	for each Δt .

```
BINARY COUNTER, USING SIMPLE INTEGRATION METHOD TO COMPUTE CURRENTS AND
                                                                                001
VOLTAGES VS. TIME.
                                                                                002
 BEGIN
                                                                                003
 COMMENT: DECLARATION OF CORE PARAMETERS.;
                                                                                004
 ALPHA CORE;
                                                                                005
 REAL LI. LO, PHIR, PHIS, HA, HQ, HN, FOPP, FB, FO, ROP, NU, LAMBDA,
                                                                                006
 F12. F23. V1. V2. EPS ;
                                                                                007
 COMMENT: DECLARATION OF CIRCUIT PARAMETERS.;
                                                                                DOR
 REAL R1, R2, R3, R4, L, NS1, NS2, NB1, NB2, EK, IO, RD, TR, IC, V,
                                                                                009
 CAPIS, TAUS;
                                                                                010
 COMMENT: DECLARATION OF VARIABLES.;
 REAL T. DELT. TI1. TI2. IL. ILM1. ILM2. IS. ISM1. ISM2. ID. IDM1.
                                                                                011
                                                                                012
 IDM2, VD, ILDOT, ILDOTM1, F1, F1M1, F2, F2M1, F1DOT, F2DOT, PHIDOT1,
                                                                                013
 PHIDOTMA1, PHIDOT1M1, PHIDOT2, PHIDOTMA2,
                                                                                014
 PHIDOTE1. PHIDOTEPR1. PHIDOTE2. PHIDOTEPR2.
                                                                                015
 PHIDOT2M1, PHIDOTPR1, PHIDOTMAPR1, PHIDOTSTR1, PHIDOTPR2,
                                                                                016
 PHIDOTMAPR2, PHIDOTSTR2, PHI1, PHIMA1, PHI1M1,
                                                                                017
 PHI1M2, PHI2, PHIMA2, PHI2M1, PHI2M2, FJ, FJM1, FPRIS, FPRID,
                                                                                018
 GJ. GJM1. GPRIS. GPRID. D. DELID. DELIS:
                                                                               019
 COMMENT: MISCELLANEOUS DECLARATIONS.;
                                                                               020
 REAL TIN. NV ;
                                                                               021
 INTEGER LINES, COUNT, CTS, CF;
                                                                               022
 LABEL SWITCHING, GUESS, LOOP, EXIT;
                                                                               023
 COMMENT: DECLARATION OF FILE OUTPUT LISTS AND FORMATS.
                                                                               024
 FILE OWT 4 (2, 15);
                                                                               025
 LIST LIST1 (CORE, LI × 193, LO × 193, PHIR × 198, PHIS × 198, HA, HQ,
                                                                               026
 HN, LAMBDA, FOPP, NU, ROP, FO, FB, EPS×109);
                                                                               027
 LIST LIST2 (R1, R2, R3, R4, L x 193, NS1, NS2, NB1, NB2, EK, IO x 196
                                                                               028

    RD, IC, V);

                                                                               029
 LIST LIST3 (T × 196, IL, IS, F1, PHI1 × 198, PHIDOT1, F2, PHI2 × 198,
                                                                               030
 PHIDOT2, ID, VD, PHIDOTE1, PHIDOTE2, CTS, CF);
                                                                               031
 FORMAT FMT1 (X1, "CORE", A7, X4, "LI(MM)=", F8.3, X4, "LO(MM)=", F8.3
                                                                               032
 , X4, "PHIR(MAXWELLS)=", F8.3, X4, "PHIS(MAXWELLS)=", F8.3 / X16, "HA(A
                                                                               033
MP-TURNS/M)=", F8.3, X4, "HQ(AMP-TURNS/M)=", F8.3, X4, "HN(AMP-TURNS/M)=
                                                                               034
", F8.3, X4, "LAMBDA=", F8.5 / X16, "FOPP(AMP-TURNS)=", F8.3, X4,
                                                                               035
 "NU=", F8.3, X4, "RHOP(OHMS/TURN SQUARED)=", F8.3, X4,
                                                                               036
 "FO(AMP-TURNS)=", F8.3 / X16, "FB(AMP-TURNS)=", F8.3, X4, "EPS(MILLIMIC
                                                                               037
ROHENRYS/TURN SQUARED)="+F8.5/);
                                                                               038
```

```
FORMAT FMT2 (X1, "CIRCUIT", X8, "R1(OHMS)=", F8.3, X4, "R2(OHMS)=",
                                                                              039
F8.3, X4, "R3(OHMS)=", F8.3, X4, "R4(OHMS)=", F8.3 / X16, "L(MILLIHENRY
                                                                              040
)=", F8.5, X4, "NS1=", I4, X4, "NS2=", I4, X4, "NB1=", I4, X4, "NB2=",
                                                                              041
14. X4. "EK(VOLT)=", F8.5 / X16. "IO(MICROAMP)=", F8.5. X4.
                                                                              042
 "RD(OHM)=", F8.3, X4, "IC(AMP)=", F8.3, X4, "V(VOLTS)=", F8.3 /);
                                                                              043
 FORMAT FMT3 (X1, F5.3, 3 F8.3, F9.3, 2 F8.3, F9.3, F8.3, F9.4, F9.3,
                                                                              044
                                                                              045
 2 F9.4, 2 I5);
 FORMAT FMT4 (X3, "T", X7, "IL", X6, "IS", X6, "F1", X5, "PHI1", X3, "PH
                                                                              046
IDOT1", X4. "F2", X5, "PHI2", X3, "PHIDOT2", X4, "ID", X7, "VD", X4, "PH
                                                                              047
IDTE1", X2, "PHIDTE2", X3, "CTS", X2, "CF" /);
                                                                              048
                                                                              049
 COMMENT: DECLARATION OF PROCEDURES.;
```

PROCEDURE $\dot{\phi}_{\epsilon}(\dot{F}, \Delta t, NV, \dot{\phi}'_{\epsilon})$, APPENDIX A PROCEDURE $\dot{\phi}(F, \phi, \dot{\phi}', \dot{\phi}^*)$, APPENDIX D-2

```
050
COMMENT: INITIALIZE CORE PARAMETERS.;
                                                                                   051
CORE + "1005C1";
                                                                                   052
HQ + 42.71
                                                                                   053
LAMBDA + 0.640;
                                                                                   054
LI + 5.599-31
                                                                                   055
LO + 7.989-31
                                                                                   056
PHIR + 6.259-8;
                                                                                   057
PHIS + 7.009-81
                                                                                   058
HA + 290.0 F
                                                                                   059
HN + 38.01
                                                                                   060
FOPP + 0.35;
                                                                                   061
FB + 3.00;
                                                                                   062
FO + 0.805;
                                                                                   063
ROP + 0.948;
                                                                                   064
NU + 1.207#
                                                                                   065
F12 + H9 × LI;
                                                                                   066
F23 + HQ x LO1
                                                                                   067
V1 + (PHIS - PHIR) / ((LO - LI) \times HA);
                                                                                   068
V2 + (PHIS + PHIR) \times HQ / ((LO - LI) \times HN);
                                                                                   069
EPS + V1×LN(LO/LI) ;
                                                                                   070
COMMENT: INITIALIZE CIRCUIT PARAMETERS.
                                                                                   071
TR + 0.1300-6;
                                                                                   072
R1 + 107.36;
                                                                                   073
R2 + 199.55;
                                                                                   074
R3 + 0.3401
                                                                                   075
R4 + 0.531
                                                                                   076
L + 0.2029-31
                                                                                   077
NS1 + 111
                                                                                   078
NS2 + 121
                                                                                   079
NB1 + 161
                                                                                   080
NB2 + 20.01
                                                                                   081
EK + 0.0578;
                                                                                   082
 10 + 0.06159-6;
                                                                                   083
 RD + 0.100;
                                                                                   084
 NV + 0.0001 -3
                                                                                    085
 V + 27.01
                                                                                    086
 COMMENT: ESTABLISH INITIAL CONDITIONS.;
                                                                                    087
                                                                                    088
 IL + ISM2 + ISM1 + IS + IDM2 + IDM1 + ID + 0;
                                                                                    089
 F1M1 + F1 + F2M1 + F2 + 01
 PHIDOT1 + PHIDOTMA1 + PHIDOTE1 + PHIDOT2 + PHIDOTMA2 + PHIDOTE2 + 0;
                                                                                    090
                                                                                    091
 40 + QV
                                                                                    092
 PHI1 + PHI2 + - PHIR;
```

```
.CAPIS + V / R1 × R2 / (R2 + 0.6 × R0P × (NS1 * 2 + NS2 * 2));
                                                                                   093
 TAUS + 2.0 x PHIR x (NB1 * 2 + NB2 * 2) / (NB2 x 0.6 x ROP x (CAPIS x
                                                                                   094
 (NS1 \times NB2 + NS2 \times NB1) - FOPP \times (NB1 + NB2)));
                                                                                   095
 IC + V / R1;
                                                                                   096
CF + 0;
                                                                                   097
WRITE (OWT [PAGE]);
                                                                                   098
WRITE (OWT, FMT1, LIST1);
                                                                                   099
WRITE (OWT, FMT2, LIST2);
                                                                                   100
WRITE (OWT, FMT4);
                                                                                   101
WRITE (OWT, FMT3, LIST3);
                                                                                   102
 LINES + 12;
                                                                                   103
COUNT + 0:
                                                                                   104
COMMENT: COMPUTE VARIABLES DURING SWITCHING TIME. :
                                                                                   105
SWITCHING:
                                                                                   106
BEGIN ILM2 + ILM1;
                                                                                   107
    ILM1 + ILI
                                                                                   108
    PHI1M2 + PHI1M1;
                                                                                  109
    PHI1M1 + PHI1;
                                                                                  110
    PHI2M2 + PHI2M1;
                                                                                  111
    PHI2M1 + PHI2;
                                                                                  112
    PHIDOTIM1 + PHIDOT1;
                                                                                  113
    PHIDOT2M1 + PHIDOT2;
                                                                                  114
    ISM2 + ISM1;
                                                                                  115
    ISM1 + IS#
                                                                                  116
    IDM2 + IDM1;
                                                                                  117
    IDM1 + ID;
                                                                                   118
    ILDOTM1 + ILDOT;
                                                                                  119
    F1M1 + F1;
                                                                                  120
   F2M1 + F21
                                                                                  121
   DELT + IF T < TR THEN TAUS/1000 ELSE TAUS/500 ;
                                                                                  122
    T + T + DELT:
                                                                                  123
   COUNT + COUNT + 1:
                                                                                  124
   CTS + OF
                                                                                  125
   GUESS: IF T ≤ TR THEN IL + IC × (IF T < 0.0 THEN 0 ELSE IF T <
                                                                                  126
   0.020-6 THEN 1.02019 × T * 2.66667 ELSE IF T < 0.060-6 THEN 4.006
                                                                                  127
   × T - 0.05 ELSE IF T < 0.130-6 THEN 0.252 - 0.001 × (0.009470 + (
                                                                                  128
   TIN + 13 - 108 × T) × (- 0.316910 + TIN × (1.729261 + TIN × (-
                                                                                  129
   0.575947 + TIN × 0.073769)))) ELSE 0.252) / 0.252 ELSE IL + ILM2 +
                                                                                  130
   2.0 × DELT × ILDOTM1;
                                                                                  131
   PHI1 + PHI1M2 + 2.0 × DELT × PHIDOT1M1;
                                                                                  132
   PHI2 + PHI2M2 + 2.0 × DELT × PHIDOT2M1;
                                                                                  133
   IS + 2.0 × ISM1 - ISM2;
                                                                                  134
   ID + 2.0 × IDM1 - IDM2;
                                                                                  135
   LOOP:
                                                                                  136
  FJM1 + FJI
                                                                                  137
   GJM1 + GJI
                                                                                  138
   CTS + CTS + 1;
                                                                                  139
  F1 + NS1 \times IS + NB1 \times ID;
                                                                                  140
  F2 + NS2 × IS - NB2 × ID;
                                                                                  141
  F1DOT + (F1 - F1M1) / DELT;
                                                                                  142
  F2DOT + (F2 - F2M1) / DELT;
                                                                                  143
  PHIDOTMA1 + PHIDOT (F1, PHI1, PHIDOTMAPR1, PHIDOTSTR1);
                                                                                  144
  PHIDOTE1 + PHIDOTE (F1DOT.DELT.NV.PHIDOTEPR1) ;
                                                                                  145
  PHIDOT1 + PHIDOTMA1 + PHIDOTE1;
                                                                                  146
  PHIDOTPR1 + PHIDOTMAPR1 + PHIDOTEPR11
                                                                                  147
  PHIDOTMA2 + PHIDOT (F2, PHI2, PHIDOTMAPR2, PHIDOTSTR2);
PHIDOTE2 + PHIDOTE (F2DOT, DELT, NY, PHIDOTEPR2);
                                                                                  148
                                                                                  149
  PHIDOT2 + PHIDOTMA2 + PHIDOTE2;
                                                                                  150
  PHIDOTPR2 + PHIDOTMAPR2 + PHIDOTEPR21
                                                                                  151
  IF T > TR THEN
                                                                                  152
  BEGIN ILDOT + (- IL × R1 - NS1 × PHIDOT1 - NS2 × PHIDOT2 - IS × R3
                                                                                  153
                                                                                  154
      IL + ILM1 + 0.5 × DELT × (ILDOTM1 + ILDOT);
                                                                                  155
  END:
                                                                                  156
```

١

```
PHI1 + PHI1M1 + 0.5 × DELT × (PHIDOT1M1 + PHIDOT1);
                                                                             . 157
 PHI2 + PHI2M1 + 0.5 × DELT × (PHIDOT2M1 + PHIDOT2);
                                                                             158
                                                                             159 .
 VD + IF NB2 × PHIDOT2 > NB1 × PHIDOT1 THEN
 ID x RD + EK x LN (ID/IO + 1.0 ) ELSE NB2 x PHIDOT2 - NB1 x PHIDOT1;
                                                                             160
 FJ + NB2 × PHIDOT2 - NB1 × PHIDOT1 - VD - ID × R4;
                                                                             161
 GJ + NS2 × PHIDOT2 + NS1 × PHIDOT1 + IS × R3 - R2 × (IL - IS);
                                                                             162
 FPRID + - (NB2 * 2 × PHIDOTPR2 + NB1 * 2 × PHIDOTPR1 + RD + R4 +
                                                                             163
                                                                              164
 EK / (ID + IO));
 GPRIS + NS2 * 2 × PHIDOTPR2 + NS1 * 2 × PHIDOTPR1 + R2 + R3;
                                                                              165
 FPRIS + IF NB2 × PHIDOT2 > NB1 × PHIDOT1 THEN NS2 × NB2 × PHIDOTPR2
                                                                             166
                                                                              167
  - NS1 × NB1 × PHIDOTPR1 ELSE 0 ;
                                                                              168
  GPRID + - FPRISI
                                                                              169
  D + FPRID × GPRIS - FPRIS × GPRID;
                                                                              170
  IF D # 0 THEN
  BEGIN DELID + (- FJ × GPRIS + GJ × FPRIS) / D;
                                                                              171
                                                                              172
     DELIS + (FJ x GPRID - GJ x FPRID) / D;
                                                                              173
  END ELSE DELID + DELIS + 0;
                                                                              174
  ID + ID + DELID;
                                                                              175
  IS + IS + DELISA
  IF SIGN (FJ) # SIGN (FJM1) THEN ID + ID - 0.5 × DELID;
                                                                              176
                                                                              177
  IF ID & 0 THEN ID + 0 ;
  IF SIGN (GJ) # SIGN (GJM1) THEN IS + IS - 0.5 × DELIS;
                                                                              178
  IF (ABS (DELID) > 0.0001 × ABS (ID) OR ABS (DELIS) > 0.0001 × ABS (
                                                                              179
                                                                              180
  IS)) AND CTS < 20 THEN GO TO LOOP;
                                                                              181
  IF CTS = 20 THEN CF + CF + 1;
                                                                              182
  COMMENT: PRINT OUTPUT.;
                                                                              183
  IF COUNT MOD 20 = 0 THEN
                                                                              184
  BEGIN IF LINES MOD 50 = 0 THEN
                                                                              185
     BEGIN WRITE (OWT [PAGE]);
                                                                              186
         WRITE (OWT, FMT4);
                                                                              187
     END:
                                                                              188
      WRITE (OWT, FMT3, LIST3);
                                                                              189
     LINES + LINES + 1;
                                                                              190
      CF + 01
                                                                              191
   IF PHIDOTMA2 = 0 AND PHIDOTMA1 = 0 AND PHI1 > -0.9×PHIR THEN
                                                                              192
                                                                               193
   GO TO EXIT ELSE GO TO SWITCHING;
                                                                               194
END:
                                                                               195
EXIT: END.
```

APPENDIX H

COMPUTER PROGRAM FOR CORE-DIODE-TRANSISTOR BINARY COUNTER USING THE RUNGE-KUTTA AND ADAMS METHODS OF SOLUTION

Language: ALGOL 60

 $\frac{\text{Program Description:}}{\dot{\phi}_{\epsilon\,1}\text{, and }\dot{\phi}_{\epsilon2}\,\text{versus }t.}\text{Computes }i_{L},\ i_{s},\ F_{1},\ \phi_{1},\ \phi_{1},\ \dot{\phi}_{1},\ F_{2},\ \phi_{2},\ \dot{\phi}_{2},\ i_{d},\ V_{d},$

Identifiers:

(1) Analytical identifiers

Identifier	Symbol	Identifier	Symbol
CAPIS	I_{s}	ID	i,
DELT	Δt	I DM 1	i d(-1)
DELTMIN	Δt_{min}	IDM2	$i_{d(-2)}$
DELX	$\Delta_{\mathbf{x}}$	IL	i _L
DELXM1	$\Delta x_{(-1)}$	IS	i
EK	E_{k}	ISM1	i s(-1)
EPS	ϵ	ISM2	i s(-2)
FB	$egin{array}{ccc} F_{B} & & & & \\ F_{1} & & & & \\ F_{2} & & & & \end{array}$	10	\vec{I}_0
FD1	F_{1}	L	L
FD2	\dot{F}_2	LAMBDA	λ
F0	F_0	LI	l_{i}
F0PP	F_0''	LO	l
F1	F_{1}	NB1	N_{B1}
F1M1	$F_{1(-1)}$	NB2	N_{B2}
F2	\boldsymbol{F}_2	NS1	N_{s1}
F2M1	$F_{2(-1)}$	NS2	N_{s2}
F12	F 12	NU	ν
F23	F 23	PHI DOTE 1	$\phi_{\epsilon \ 1}$
НА	H_{a}	PHIDOTE2	$\phi_{\epsilon \ 2}$
HN	H_{n}	PHIDOTEPR1	$\phi_{\epsilon 1}^{\prime}$
HQ	H_{q}	PHI DOTEPR2	$\phi'_{\epsilon 2}$
IC	I_{c}	PHIDOTMA1	ф _{та1}

Identifier	Symbol	<u>Identifier</u>	Symbol
PHIDOTMA2	Ф _{та 2}	ROP	$ ho_{p}$
PHIDOTMAPR1	**************************************	R1	R_1
PHIDOTMAPR2	⊅ [*] _{m a 2}	R2	R_2
PHIDOTPR1	**************************************	R3	R_3
PHIDOTPR2	ϕ_2^{\prime}	R4	R_4
PHIDOTSTR1	$\dot{\phi}_1^*$	T	t
PHIDOTSTR2	$\overset{\cdot}{\phi}_{2}^{*}$	TAUS	$ au_{s}$
PHIDOT1	$\dot{\phi}_1$	TIN	T_n
PHIDOT2	$\dot{\phi}_2$	TR	T_r
PHIMA1	$\phi_{m \ a \ 1}$	TIl	T_{i} 1
PHIMA2	ϕ_{ma2}	T12	T_{i2}
PHIR	φ_r	V	V.
PHIS	ϕ_s	VD	V_{d}
PHI1	ϕ_1^{s}	V1	V_1
PHI2	ϕ_2^{-1}	V2	V_2
RD	R_d	XM1	x (-1)

(2) Auxiliary identifiers

Identifier	Description
CORE	Core name.
COUNT	Index number of Δt .
EL	Lower limit of error in ADAMS PROCEDURE
EU	Upper limit of error in ADAMS PROCEDURE
EXIT	Label of location where computation terminates
FCOUNT	Index number of j th iteration in F PROCEDURE.
FMT1	Format for the list LIST1.
FMT2	Format for the list LIST2.
FMT3	Format for the list LIST3.
FMT4	Format for output-column heading.
Н	Array for $h(=\triangle x = \triangle t)$ to be used in RK and
	ADAMS PROCEDUREs.
I	Index for Δt to be used in RK and ADAMS
	PROCEDUREs.
LINES	Index number of printed line.
LIST1	List of core parameters.
LIST2	List of circuit parameters.

Identifier	Description
LIST3	List of results (t, i_L i_s , F_1 , ϕ_1 , $\dot{\phi}_1$, F_2 ,
NV	ϕ_2 , $\dot{\phi}_2$, i_d , V_d , $\dot{\phi}_{\epsilon1}$, $\dot{\phi}_{\epsilon2}$, j_{max} , Δt). Negligible value of $\dot{\phi}_\epsilon$.
SWITCHING	Label of location where computation starts for each Δt .
X	Array for storing $x = t$.
Y	Array for storing a dependent variable.
YPR	Array for storing the time derivitive of a
	dependent variable.

```
BINARY COUNTER, USING RUNGE-KUTTA AND ADAMS METHODS TO COMPUTE CURRENTS
                                                                                001
 AND VOLTAGES VS. TIME.
                                                                                002
  BEGIN
                                                                                003
  COMMENT: DECLARATION OF CORE PARAMETERS.
                                                                                004
  ALPHA CORE;
                                                                                005
 REAL LI. LO. PHIR. PHIS. HA. HQ. HN. FOPP. FB. FO. ROP. NU. LAMBDA.
                                                                                006
 F12, F23, V1, V2, EPS;
                                                                               007
 COMMENT: DECLARATION OF CIRCUIT PARAMETERS.;
 REAL R1. R2, R3, R4, L, NS1, NS2, NB1, NB2, EK, IO, RD, TR, IC, V,
                                                                               800
                                                                               009
 CAPIS, TAUS;
                                                                               010
 COMMENT: DECLARATION OF VARIABLES.;
 REAL T. DELT. XM1. DELXM1. DELX. TI1. TI2. IL. ISM2. ISM1. IS. IDM2.
                                                                               011
 IDM1, ID, VD, F1M1, F1, F2M1, F2, FD1, FD2, PHIDOT1, PHIDOTMA1,
                                                                               012
 PHIDOTE1, PHIDOT2, PHIDOTMA2, PHIDOTE2, PHIDOTPR1, PHIDOTMAPR1,
                                                                               013
 PHIDOTSTR1, PHIDOTEPR1, PHIDOTPR2, PHIDOTMAPR2, PHIDOTSTR2,
                                                                               014
                                                                               015
 PHIDOTEPR2, PHI1, PHIMA1, PHI2, PHIMA2;
                                                                               016
 COMMENT: MISCELLANEOUS DECLARATIONS.
                                                                               017
 REAL EU, EL, DELTMIN, TIN, NV ;
                                                                               018
 INTEGER I, LINES, COUNT, FCOUNT;
                                                                               019
 REAL ARRAY H, X [0 : 5], Y, YPR [0 : 5, 0 : 3];
                                                                               020
 LABEL SWITCHING, EXIT;
                                                                               021
 COMMENT: DECLARATION OF FILE OUTPUT LISTS AND FORMATS.
                                                                               022
 FILE OWT 4 (2, 15);
 LIST LIST1 (CORE, LI x 103, LO x 103, PHIR x 108, PHIS x 108, HA, HQ,
                                                                               023
 HN, LAMBDA, FOPP, NU, ROP, FO, FB, EPS×109);
                                                                               024
                                                                               025
 LIST LIST2 (R1, R2, R3, R4, L x 193, NS1, NS2, NB1, NB2, EK, IO x 196
                                                                               026
 . RD. IC. V);
                                                                               027
 LIST LIST3 (T × 196, IL, IS, F1, PHI1 × 198, PHIDOT1, F2, PHI2 × 198,
                                                                               028
 PHIDOT2, ID, VD, PHIDOTE1, PHIDOTE2, FCOUNT, DELT×109) ;
                                                                               029
 FORMAT FMT1 (X1, "CORE", A7, X4, "LI(MM)=", F8.3, X4, "LO(MM)=", F8.3
                                                                               030
 , X4, "PHIR(MAXWELLS)=", F8.3, X4, "PHIS(MAXWELLS)=", F8.3 / X16, "HA(A
MP-TURNS/M)=", F8.3, X4, "HQ(AMP-TURNS/M)=", F8.3, X4, "HN(AMP-TURNS/M)=
                                                                               031
                                                                               032
", F8.3, X4, "LAMBDA=", F8.5 / X16, "FOPP(AMP-TURNS)=", F8.3, X4,
"NU=", F8.3, X4, "RHOP(OHMS/TURN SQUARED)=", F8.3, X4,
                                                                               033
 "FO(AMP-TURNS)=", F8.3 / X16, "FB(AMP-TURNS)=", F8.3, X4, "EPS(MILLIMIC
                                                                               034
                                                                               035
ROHENRYS/TURN SQUARED)=",F8.5/);
FORMAT FMT2 (X1, "CIRCUIT", X8, "R1(OHMS)=", F8.3, X4, "R2(OHMS)=",
                                                                               036
                                                                               037
F8.3, X4, "R3(OHMS)=", F8.3, X4, "R4(OHMS)=", F8.3 / X16, "L(MILLIHENRY
                                                                               038
)=", F8.5, X4, "NS1=", I4, X4, "NS2=", I4, X4, "NB1=", I4, X4, "NB2=",
14. X4. "EK(VOLT)=", F8.5 / X16. "IO(MICROAMP)=", F8.5. X4.
                                                                               039
                                                                               040
"RD(OHM)=", F8.3, X4, "IC(AMP)=", F8.3, X4, "V(VOLTS)=", F8.3 /);
FORMAT FMT3 (X1, F5.3, 3 F8.3, F9.3, 2 F8.3, F9.3, F8.3, F9.4, F9.3,
                                                                               041
                                                                               042
2 F9.4, I3, F7.4);
                                                                              043
```

```
FORMAT FMT4 (X3, "T", X7, "IL", X6, "IS", X6, "F1", X5, "PHI1", X3, "PH IDOT1", X4, "F2", X5, "PHI2", X3, "PHIDOT2", X4, "ID", X7, "VD", X4, "PH IDTE1", X2, "PHIDTE2"," CTS DELT"/); COMMENT: DECLARATION OF PROCEDURES.;
```

PROCEDURE $\dot{\phi}_{\epsilon}(\dot{F}, \Delta t, NV, \dot{\phi}'_{\epsilon})$, APPENDIX A PROCEDURE $\dot{\phi}(F, \phi, \dot{\phi}', \dot{\phi}^*)$, APPENDIX D-2

```
001
PROCEDURE F (X, Y, DX);
                                                                               002
VALUE XI
                                                                               003
REAL XI
                                                                               004
ARRAY Y [0], DX [0];
COMMENT: THIS PROCEDURE USES THE FOLLOWING GLOBAL IDENTIFIERS: TR, R1
                                                                               005
, R2, L, NS1, NS2, NB1, NB2, EK, IO, RD, IC, CAPIS, FCOUNT, T, XM1,
                                                                               006
DELXM1, DELX, NV, ISM2, ISM1, IS, IDM2, IDM1, ID, VD, F1M1, F1,
                                                                               007
F2M1, F2, FD1, FD2, PHIDOT1, PHIDOTMA1, PHIDOTE1, PHIDOT2, PHIDOTMA2,
                                                                               008
PHIDOTE2, PHIDOTPRI, PHIDOTMAPRI, PHIDOTSTRI, PHIDOTEPRI, PHIDOTPR2,
                                                                               009
                                                                               010
PHIDOTMAPR2, PHIDOTSTR2, PHIDOTEPR2;
BEGIN REAL U, V, UIS, UID, VIS, VID, NUMS, NUMD, DEEIS, DEEID, DENOM;
                                                                          F
                                                                               011
                                                                               012
   LABEL ITERAT
                                                                               013
   IF X # XM1 THEN
                                                                               014
   BEGIN DELXM1 + DELX;
                                                                               015
      DELX + X - XM1;
                                                                               016
       IF DELXM1 = 0 THEN DELXM1 + DELX;
                                                                               017
       ISM2 + ISM1;
                                                                               018
       ISM1 + IS;
                                                                               019
       IDM2 + IDM1;
                                                                               020
       IDM1 + ID:
                                                                               021
       F1M1 + F1;
                                                                               022
       F2M1 + F2#
                                                                               023
       IS + ISM1 + (ISM1 - ISM2) × DELX / DELXM1;
                                                                               024
       ID + IDM1 + (IDM1 - IDM2) × DELX / DELXM1;
                                                                               025
    END:
                                                                               026
    FCOUNT + 01
                                                                               027
    ITERAT : FCOUNT + FCOUNT + 1;
                                                                               028
    F1 + NS1 × IS + NB1 × ID;
                                                                                029
    F2 + NS2 × IS - NB2 × ID;
                                                                                030
    FD1 + (F1 - F1M1) / DELX;
                                                                                031
    FD2 + (F2 - F2M1) / DELX;
    PHIDOTMA1 + PHIDOT (F1, Y [1], PHIDOTMAPR1, PHIDOTSTR1);
                                                                                032
    PHIDOTE1 + PHIDOTE (FD1, DELX, NV, PHIDOTEPR1) ;
                                                                                033
                                                                                034
    DX [1] + PHIDOT1 + PHIDOTMA1 + PHIDOTE1;
                                                                                035
    PHIDOTPR1 + PHIDOTMAPR1 + PHIDOTEPR1;
    PHIDOTMA2 + PHIDOT (F2, Y [2], PHIDOTMAPR2, PHIDOTSTR2);
                                                                                036
    PHIDOTE2 + PHIDOTE (FD2, DELX, NV, PHIDOTEPR2) ;
                                                                                037
                                                                                038
    DX [2] + PHIDOT2 + PHIDOTMA2 + PHIDOTE2;
                                                                                039
    PHIDOTPR2 + PHIDOTMAPR2 + PHIDOTEPR2;
     IF T & TR THEN DX [3] + IC × (IF T < 0.00 THEN 0 ELSE IF T <
                                                                                040
     0.028-6 THEN 2.72819 × T * 1.66667 ELSE IF T < 0.068-6 THEN 4.086
                                                                                041
     ELSE 1.005 × (- 0.316910 + (TIN + 13.0 - 1.008 × T) × (3.458522 +
                                                                                042
     TIN × (- 1.727841 + TIN × 0.295076)))) / 0.252 ELSE DX [3] + - (
                                                                                043
                                                                                044
     NS2 × PHIDOT2 + NS1 × PHIDOT1 + Y [3] × R1) / LF
                                                                                045
     VD ← IF NB2 × PHIDOT2 > NB1 × PHIDOT1 THEN
     ID x RD + EK x LN (ID/I0 + 1.0 ) ELSE NB2 x PHIDOT2 - NB1 x PHIDOT1#F
                                                                                046
     U + NS1 × PHIDOT1 + NS2 × PHIDOT2 + IS × R3 - (Y [3] - IS) × R21
                                                                                047
                                                                                048
     V + NB1 × PHIDOT1 - NB2 × PHIDOT2 + ID × R4 + VD;
     UIS + NS1 * 2 × PHIDOTPR1 + NS2 * 2 × PHIDOTPR2 + R2 + R3;
                                                                                049
     VID + NB1 + 2 × PHIDOTPR1 + NB2 + 2 × PHIDOTPR2 + RD + EK / (ID +
                                                                                050
                                                                                051
     10) + R4;
```

```
UID + VIS + IF NB2 × PHIDOT2 > NB1 × PHIDOT1 THEN
                                                                                   052
   NS1 × NB1 × PHIDOTPR1 - NS2 × NB2 × PHIDOTPR2 ELSE 0 ;
                                                                                   053
   DENOM + UIS x VID - UID x VIS;
                                                                             F
                                                                                   054
   IF DENOM = 0 THEN DENOM + 1810;
                                                                                   055
   NUMS + V × UID - U × VID;
                                                                                   056
   NUMD + U × VIS - V × UIS:
                                                                                   057
   IF SIGN (NUMS / DENOM) \neq SIGN (DEEIS) THEN DEEIS + 0.5 × (NUMS / DENOM) ELSE DEEIS + NUMS / DENOM;
                                                                                   058
                                                                                   059
   IF SIGN (NUMD / DENOM) # SIGN (DEEID) THEN DEEID + 0.5 x (NUMD /
                                                                                   060
   DENOM) ELSE DEEID + NUMD / DENOM;
                                                                                   061
   IS + IS + DEEIS;
                                                                                   062
   ID + ID + DEEID;
                                                                                   063
   IF ID & 0 THEN ID + 0 ;
                                                                                   064
   IF FCOUNT < 10 AND (ABS (DEEIS) > 0.0001 × ABS (IS) OR ABS (DEEID)
                                                                                   065
   > 0.0001 × ABS (ID)) THEN GO TO ITERAT;
                                                                                   066
   XM1 + XF
                                                                                   067
END OF FE
                                                                             F
                                                                                   068
PROCEDURE RKSTARTS (K, NF, X1, H, Y, YPR, F);
                                                                             RK
                                                                                  001
VALUE K. NF. HI
                                                                             RK
                                                                                  002
REAL X1, H;
                                                                             RK
                                                                                  003
INTEGER K. NF;
                                                                             RK
                                                                                  004
ARRAY Y, YPR [0, 0];
                                                                             RK
                                                                                  005
PROCEDURE F
                                                                             RK
                                                                                  006
BEGIN INTEGER I, J;
                                                                             RK
                                                                                  007
   ARRAY DX, TEMPY, K1, K2, K3, K4, K5, K6 [0 : K];
                                                                             RK
                                                                                  800
   FOR I + 0 STEP 1 UNTIL (NF - 1) DO
                                                                             RK
                                                                                  009
   BEGIN
                                                                             ŘK
                                                                                  010
      BEGIN REAL XI
                                                                             RK
                                                                                  011
         X + H \times I + X1i
                                                                             RK
                                                                                  012
         F (X, Y [I, +], DX);
                                                                             RK
                                                                                  013
         FOR J + 1 STEP 1 UNTIL K DO
                                                                             RK
                                                                                  014
         BEGIN K1 [J] + DX [J] × H;
                                                                             RK
                                                                                  015
            TEMPY [J] + K1 [J] / 3.0 + Y [I, J]
                                                                             RK
                                                                                  016
         FND:
                                                                             RK
                                                                                  017
         F (H / 3.0 + X, TEMPY, DX);
                                                                            RK
                                                                                  018
         FOR J + 1 STEP 1 UNTIL K DO
                                                                            RK
                                                                                  019
         BEGIN K2 [J] + DX [J] x H;
                                                                            RK
                                                                                  020
            TEMPY [J] + (K2 [J] × 6.0 + K1 [J] × 4.0) / 25.0 + Y [I.
                                                                            RK
                                                                                  021
            J)
                                                                            RK
                                                                                  022
         END:
                                                                            RK
                                                                                  023
         F ((H × 2.0) / 5.0 + X, TEMPY, DX);
                                                                            RK
                                                                                  024
         FOR J + 1 STEP 1 UNTIL K DO
                                                                            RK
                                                                                  025
         BEGIN K3 [J] + DX [J] x H;
                                                                            RK
                                                                                  026
            TEMPY [J] + (K3 [J] × 15.0 - K2 [J] × 12.0 + K1 [J]) /
                                                                            RK
                                                                                  027
            4.0 + Y [I, J]
                                                                            RK
                                                                                  028
         END:
                                                                            RK
                                                                                  029
         F (H + X, TEMPY, DX);
                                                                            RK
                                                                                  030
        FOR J + 1 STEP 1 UNTIL K DO
                                                                                  031
                                                                            RK
         BEGIN K4 [J] + DX [J] × H;
                                                                            RK
                                                                                  032
            TEMPY [J] + (K4 [J] \times 8.0 - K3 [J] \times 50.0 + K2 [J] \times 90.0
                                                                            RK
                                                                                  033
            + K1 [J] x 6.0) / 81.0 + Y [I, J]
                                                                            RK
                                                                                  034
        END:
                                                                            RK
                                                                                 035
        F((H \times 2.0) / 3.0 + X, TEMPY, DX);
                                                                            RK
                                                                                 036
        FOR J + 1 STEP 1 UNTIL K DO
                                                                            RK
                                                                                 037
        BEGIN K5 [J] + DX [J] × H;
                                                                            RK
                                                                                 038
            TEMPY [J] + (K4 [J] × 8.0 + K3 [J] × 10.0 + K2 [J] × 36.0
                                                                            RK
                                                                                 039
            + K1 [J] \times 6.0) / 75.0 + Y [I, J]
                                                                            RK
                                                                                 040
        END;
                                                                            RK
                                                                                 041
        F((H \times 4.0) / 5.0 + X, TEMPY, DX);
                                                                            RK
                                                                                 042
        FOR J + 1 STEP 1 UNTIL K DO
                                                                            RK
                                                                                 043
        BEGIN K6 [J] + DX [J] x H;
                                                                            RK
                                                                                 044
            Y [I + 1, J] + (K1 [J] × 23.0 + K3 [J] × 125.0 - K5 [J] ×
                                                                            RK
                                                                                 045
            81.0 + K6 [J] \times 125.0) / 192.0 + Y [I, J]
                                                                            RK
                                                                                 046
```

```
047
                                                                        RK
        END!
                                                                             OAA
                                                                        RK
     END XBLOCK;
                                                                             049
                                                                        RK
     X [] + 13 + X [] + H;
     F (X [I + 1], Y [I + 1, *], YPR [I + 1, *]);
                                                                        RK
                                                                             050
                                                                             051
                                                                        RK
     T + X [] + 13;
                                                                             052
                                                                        RK
     PHI1 + Y [I + 1, 1];
                                                                        RK
                                                                             053
     PHI2 + Y [I + 1, 2];
                                                                             054
                                                                        RK
     IL + Y [] + 1, 3];
                                                                        RK
                                                                             055
     PHIDOT1 + YPR [I + 1, 1];
                                                                             056
                                                                        RK
     PHIDOT2 + YPR [I + 1, 2];
                                                                        RK
                                                                             057
     F1 + NS1 × IS + NB1 × ID;
                                                                             058
                                                                        RK
     F2 + NS2 × IS - NB2 × ID;
                                                                              059
     VD + ID × RD + EK × LN (ID / I0 + 1);
                                                                        RK
                                                                        RK
                                                                              060
     WRITE (OWT, FMT3, LIST3);
                                                                        RK
                                                                              061
      LINES + LINES + 11
                                                                        RK
                                                                              062
      COUNT + COUNT + 1;
                                                                              063
                                                                        RK
   END
                                                                        RK
                                                                              064
END PROCEDURE RKSTARTS:
PROCEDURE ADAMS (X, Y, YPRIME, N, EU, EL, EPS, H, HMIN);
                                                                         ADAMS001
                                                                         ADAMS002
VALUE NI
                                                                         ADAMS003
ARRAY Y CO, 03, YPRIME CO, 03, X CO3, H CO3;
                                                                         ADAMS004
REAL EU, EL, EPS, HMIN;
                                                                         ADAMS005
INTEGER NI
                                                                         ADAMS006
BEGIN INTEGER I, J, Q;
                                                                         ADAMS007
   ALPHA B
                                                                         ADAMSOOR
   REAL TEMP, KP, KC, KK, YC, E;
   REAL ARRAY U [0 : 3], P [0 : 4], C [0 : 4], K [0 : 5], YP [0 : 20] ADAMS009
                                                                         ADAMS010
   , FP [0 : 20];
                                                                         ADAMS011
   LABEL AWAY!
   FOR I + 2 STEP 1 UNTIL 4 DO H [I] + X [I] - X [I - 1];
                                                                         ADAMS012
                                                                         ADAMS013
   H [5] + H [4];
                                                                         ADAMS014
    IF B # 0 THEN H [5] + 2 × H [5];
                                                                         ADAMS015
   B + 0;
   FOR I + 3 STEP 1 UNTIL 5 DO K [I] + H [I - 1] / H [I];
                                                                         ADAMS016
                                                                         ADAMS017
    AWAY: FOR I + 1 STEP 1 UNTIL 3 DO
                                                                         ADAMS018
       FOR J + 5 - I STEP 1 UNTIL 4 DO U [1] + K [J + 1] × (1 + U [1]) ADAMS019
    BEGIN U [1] + 0;
    P[1] + - (3 + 4 × (U[1] + U[2]) + 6 × U[1] × U[2]) / (12 × U[ ADAMS021
    3] × (U[3] - U[1]) × (U[3] - U[2]);
    P[2] + - (3 + 4 × (U [1] + U [3]) + 6 × U [1] × U [3]) / (12 × U [ ADAMS023
    2] × (U [2] - U [1]) × (U [2] - U [3]));
    P[3] + - (3 + 4 × (U[2] + U[3]) + 6 × U[2] × U[3]) / (12 × U[ ADAMS025
    13 × (U[1] - U[2]) × (U[1] - U[3]));
                                                                          ADAMS027
    P [4] + 1 - (P [1] + P [2] + P [3]);
    C [1] + (1 + 2 × U [1]) / (12 × U [2] × (U [2] + 1) × (U [2] - U [
                                                                          ADAMS028
                                                                          ADAMS029
    C [2] + (1 + 2 × U [2]) / (12 × U [1] × (U [1] + 1) × (U [1] - U [
                                                                          ADAMS030
                                                                          ADAMS031
    C [4] + (3 + 4 × (U [1] + U [2]) + 6 × U [1] × U [2]) / (12 × (U [
    2]));
                                                                          ADAMS032
                                                                          ADAMS033
     1] + 1) x (U [2] + 1));
                                                                          ADAMS034
     C [3] + 1 - (C [1] + C [2] + C [4]);
    KP + 0.2 - (P [3] × (U [1] + 4) + P [2] × (U [2] + 4) + P [1] × (U
                                                                          ADAMS035
                                                                          ADAMS036
     KC + 0.2 - (C [4] + C [2] \times U [1] * 4 + C [1] \times (U [2] * 4));
     [3] * 4));
                                                                          ADAMS037
                                                                          ADAMS038
     KK + KC / (KP - KC);
                                                                          ADAMS039
     FOR J + 1 STEP 1 UNTIL N DO
     BEGIN YP [J] + Y [4, J] + H [5] × (P [4] × YPRIME [4, J] + P [3] ×
                                                                          ADAMS040
        YPRIME [3, J] + P [2] × YPRIME [2, J] + P [1] × YPRIME [1, J]);
                                                                          ADAMS041
                                                                           ADAMS042
        Y [5, J] + YP [J]
                                                                           ADAMS043
```

END:

```
. Q + O;
                                                                             ADAMS044
    FOR J + 1 STEP 1 UNTIL N DO
                                                                             ADAMS045
    BEGIN I + 51
                                                                             ADAMS046
       X [5] + X [4] + H [5];
                                                                             ADAMS047
       IF J = 1 THEN F (X [5], Y [5, +], FP);
                                                                             ADAMS048
       YC + Y [4, J] + H [5] × (C [4] × FP [J] + C [3] × YPRIME [4, J]
                                                                            ADAMS049
       + C [2] × YPRIME [3, J] + C [1] × YPRIME [2, J]);
                                                                             ADAMS050
       YPRIME [5, J] + FP [J];
                                                                            ADAMS051
       E + KK x (YC - YP [J]);
                                                                            ADAMS052
       Y [5, J] + YC + E;
                                                                            ADAMS053
       TEMP + ABS (YC);
                                                                            ADAMS054
       IF TEMP < EPS THEN TEMP + EPS;
                                                                            ADAMS055
       IF ABS (E) > EU × TEMP AND H [5] 2 HMIN × 2.0 THEN
                                                                            ADAMS056
       BEGIN H [5] + 0.5 x H [5];
                                                                            ADAMS057
          K [5] + 2 × K [5];
                                                                            ADAMS058
          GO TO AWAY
                                                                            ADAMS059
       END;
                                                                            ADAMS060
       TEMP + ABS (YC);
                                                                            ADAMS061
       IF TEMP < EPS THEN TEMP + EPS;
                                                                            ADAMS062
       IF ABS (E) < EL × TEMP THEN Q + Q + 1
                                                                            ADAMS063
    END:
                                                                            ADAMS064
    IF Q = N THEN B + 1;
                                                                            ADAMS065
END ADAMS:
                                                                            ADAMS066
STREAM PROCEDURE TRANSFER (N. A. B);
                                                                            TRNSFR01
VALUE NI
                                                                            TRNSFR02
BEGIN SI + AF
                                                                            TRNSFR03
   DI + B;
                                                                            TRNSFROA
   DS + N WDS:
                                                                            TRNSFR05
END TRANSFER!
                                                                            TRNSFR06
COMMENT: INITIALIZE CORE PARAMETERS.;
                                                                                 048
CORE + "1005C1";
                                                                                 049
HQ + 42.7;
                                                                                 050
LAMBDA + 0.640;
                                                                                 051
LI + 5.590-3;
                                                                                 052
LO + 7.980-3;
                                                                                 053
PHIR + 6.250-8;
                                                                                 054
PHIS + 7.000-8;
                                                                                 055
HA + 290.0 ;
                                                                                 056
HN + 38.0;
                                                                                 057
FOPP + 0.35;
                                                                                 058
FB + 3.00;
                                                                                 059
F0 + 0.805;
                                                                                 060
ROP + 0.948;
                                                                                 061
NU + 1.2071
                                                                                 062
F12 + HQ x LI;
                                                                                 063
F23 + HQ x LO;
                                                                                 064
V1 + (PHIS - PHIR) / ((LO - LI) \times HA);
                                                                                 065
V2 + (PHIS + PHIR) \times HQ / ((LO - LI) \times HN);
                                                                                 066
EPS + V1×LN(LO/LI) ;
                                                                                 067
COMMENT: INITIALIZE CIRCUIT PARAMETERS.;
                                                                                 068
TR + 0.1309-6;
                                                                                 069
R1 + 107.36;
                                                                                 070
R2 + 199.55;
                                                                                 071
R3 + 0.340;
                                                                                 072
R4 + 0.53;
                                                                                 073
L + 0.2029-3;
                                                                                 074
NS1 + 11;
                                                                                 075
NS2 + 127
                                                                                 076
NB1 + 16;
                                                                                 077
NB2 + 20.0;
                                                                                 078
EK + 0.0578;
                                                                                 079
IO + 0.06159-61
                                                                                 080
```

```
081
RD + 0.100;
                                                                                082
V + 27.0 1
                                                                                083
NV + 0.0001 |
                                                                                084
COMMENT: ESTABLISH INITIAL CONDITIONS.;
                                                                                085
                                                                                086
IL + ISM2 + ISM1 + IS + IDM2 + IDM1 + ID + 0;
                                                                                087
F1M1 + F1 + F2M1 + F2 + 0;
PHIDOT1 + PHIDOTMA1 + PHIDOTE1 + PHIDOT2 + PHIDOTMA2 + PHIDOTE2 + 0;
                                                                                088
                                                                                089
                                                                                090
PHI1 + PHI2 + - PHIR;
CAPIS + V / R1 × R2 / (R2 + 0.6 × ROP × (NS1 * 2 + NS2 * 2));
                                                                                091
TAUS + 2.0 × PHIR × (NB1 * 2 + NB2 * 2) / (NB2 × 0.6 × ROP × (CAPIS ×
                                                                                092
(NS1 × NB2 + NS2 × NB1) - FOPP × (NB1 + NB2)));
                                                                                093
IC + V / R1;
                                                                                095
WRITE (OWT [PAGE]);
                                                                                096
WRITE (OWT, FMT1, LIST1);
                                                                                097
WRITE (OWT, FMT2, LIST2);
                                                                                098
WRITE (OWT, FMT4);
                                                                                099
WRITE (OWT, FMT3, LIST3);
                                                                                100
LINES + 121
                                                                                101
COUNT + 0;
                                                                                102
X [03 + 0;
                                                                                103
DELT + TAUS / 500;
                                                                                104
DELTMIN + DELT / 10;
                                                                                105
EU + 0.001;
                                                                                106
EL + 0.0001;
                                                                                107
 Y [0, 1] + Y [0, 2] + - PHIR;
                                                                                108
 Y [0. 3] + 0;
                                                                                109
 XM1 + - DELT;
                                                                                110
 RKSTARTS (3, 4, 0.0, DELT, Y, YPR, F);
                                                                                111
 SWITCHING: COUNT + COUNT + 1;
 IF T & TR THEN ADAMS (X, Y, YPR, 3, EU, EL, 0.1 × PHIR, H, DELTMIN)
                                                                                112
 ELSE ADAMS (X, Y, YPR, 3, 5.0 × EU, 10.0 × EL, 0.1 × PHIR, H, DELTMIN
                                                                                113
                                                                                114
                                                                                115
 DELT + H [5]
                                                                                116
 T + X [5];
                                                                                117
 PHI1 + Y [5, 1];
                                                                                118
 PHI2 + Y [5, 2];
                                                                                119
 IL + Y [5, 3];
                                                                                 120
 PHIDOT1 + YPR [5, 1];
                                                                                121
 PHIDOT2 + YPR [5, 2];
                                                                                122
 COMMENT: PRINT OUTPUT.;
                                                                                123
 IF COUNT MOD 20 = 0 THEN
                                                                                 124
 BEGIN IF LINES MOD 50 = 0 THEN
                                                                                 125
    BEGIN WRITE (OWT [PAGE]);
                                                                                 126
        WRITE (OWT, FMT4);
                                                                                 127
                                                                                 128
     WRITE (OWT, FMT3, LIST3);
                                                                                 129
    LINES + LINES + 11
                                                                                 130
  END:
                                                                                 131
  TRANSFER (4, X [2], X [1]);
                                                                                 132
  FOR I + 2 STEP 1 UNTIL 5 DO
                                                                                 133
  BEGIN TRANSFER (3, Y [I, 1], Y [I - 1, 1]);
                                                                                 134
     TRANSFER (3, YPR [I, 1], YPR [I - 1, 1]);
                                                                                 135
                                                                                 136
  IF PHIDOTMA2 = 0 AND PHIDOTMA1 = 0 AND PHI1 > -0.9×PHIR THEN
                                                                                 137
  GO TO EXIT ELSE GO TO SWITCHING;
                                                                                 138
  EXIT: END.
```

APPENDIX I

COMPUTER PROGRAM FOR FLUX DIVISION IN A LOADED SATURABLE CORE

Language: ALGOL 60

Program Description: Computes three types of output:

- (1) $\dot{\phi}_{m}$, ϕ_{m} , F_{m} , $\dot{\phi}_{3}$, ϕ_{3} , F_{3} , $\dot{\phi}_{4}$, ϕ_{4} , F_{4} , and Ni
- (2) D vs. NI and N_L^2/R_L for given l_4/l_3 . (3) D vs. l_4/l_3 and N_L^2/R_L for given NI.

Identifiers:

(1) Analytical identifiers

Identifier	Symbol	Identifier	Symbol
AM	Ä "	FB4	F_{B4}
A3	A_3	FIM	F_{im}
A4	A_{4}	FI3	F_{i3}
BR	B_r	FI4	F_{i4}
BS	B_{s}	FJ	f
CIM	$C_{i\mathbf{a}}$	FJPR	f'
CI3	C_{i3}	FM	F_{m}
CI4	C_{i4}	FOIM	F_{0im}^{m}
D	D	F0 I 3	F_{0i3}
DF4	$\delta F_{4(j)}$	F0 I 4	F_{0i4}
DELF4	$F_4 - F_{4(-1)}$	FO M	F_{0_R}
DELPHIM	$\phi_{_{\mathbf{R}}} - \phi_{_{\mathbf{R}}(-1)}$	F0 3	F_{03}
DELPHI3	$\phi_3 - \phi_{3(-1)}$	F0 4	F_{04}
DELPHI 4	$\phi_4 - \phi_{4(-1)}$	FOPP M	$F_{0m}^{"}$
DELT	Δt	FOPP 3	F"03
DELTAPHI3	$\Delta \! \phi_{f 3}$	F0PP4	$F_{0}^{"}$
DELTAPHI 4	$\Delta \phi_{f 4}$	F12M	F_{12m}
FBM	F_{Bn}	F123	F_{123}
FB3	F_{B3}	F124	F_{124}

Identi fier	Symbol	Identi fier	$\frac{\operatorname{Symbol}}{}$
F23M	F_{23m}	PHIDM	$\phi_{d\mathtt{m}}$
F233	F_{233}	PHID3	ϕ_{d3}
F234	F 234	PHID4	ϕ_{d4}
F3	F_3	PHIDOTIPRM	ϕ'_{im}
F4	F_{4}	PHIDOTIPR3	$\dot{\Phi}'_{i3}$
F4M1	F 4 (-1)	PHIDOTIPR4	$\dot{\phi}_{i4}^{\prime}$
Н	h	PHIDOTM	$\boldsymbol{\dot{\phi}}_{_{m{m}}}$
НА	H_{a}	PHIDOTMAPRM	$\phi_{_{mam}}$
НВ	H_{B}^{α}	PHIDOTMAPR3	$\dot{\Phi}'_{ma3}$
HN	H_{n}^{D}	PHIDOTMAPR4	ϕ'_{ma4}
НQ	$H_{-q}^{''}$	PHI DOTMM 1	Ф _m (- 1)
НО	H_0^{q}	PHIDOT3M1	$\dot{\phi}_{3(extsf{-}1)}$
НОРР	H_0''	PHIDOT4M1	$\phi_{4(-1)}$
ноі	H_{0i}	PHIDOTPRM	$\dot{\Phi}_{\scriptscriptstyle{m}}^{\prime}$
KAPPA	К	PHIDOTPR3	${\boldsymbol{\dot{\phi}}^{\prime}}_3$
KAPPAI	κ _i	PHIDOTPR4	$\boldsymbol{\dot{\phi}'_4}$
LAMBDAIM	λ_{im}	PHIDOT3	$\dot{\phi}_3$
LAMBDAI3	λ,3	PHIDOT4	ϕ_{4}
LAMBDAI4	λ , 4	РНІМ	$\phi_{_{m{m}}}$
LAMBDAM	λ_{m}	PHIMM1	$\phi_{m(-1)}$
LAMBDA3	$\lambda_3^{"}$	PHIRM	$\phi_{r\mathtt{m}}$
LAMBDA4	λ_{4}	PHIR3	ϕ_{r3}
LIM	l _{im}	PHIR4	ϕ_{r4}
LI3	l_{i3}	PHISM	ϕ_{sm}
LI4	l , 4	PHIS3	ϕ_{s3}
LOM	l o m	PHIS4	ϕ_{s4}
LO3	l , 3	PHI 3	$\phi_{f 3}$
LO4	l _{0 4}	PHI3M1	$\phi_{3(-1)}$
LM	l_m	PHI4	$\phi_{f 4}$
L3	l_3	PHI 4M1	$\phi_{4(\text{-}1)}$
L4	l_{-4}	ROPM	ρ_{pm}
ΜI	M_{i}	ROP3	ρ_{p3}
NI	NI	ROP4	ρ_{p4}
NIV	Ni	S	l_4/l_3
NNR	N_L^2/R_L	T	t
NU	ν	TAUS	$ au_{_{\mathbf{s}}}$
NUI	$ u_{i}$	TIM	T_{im}

<u>Identifier</u>	Symbol	Identifier	Symbol
TR	T_r	V23	V_{23}
TI 3	T_{i3}	V24	V 2 4
TI 4	T_{i4}	ZETAP	ζ,
V1M	V 1 a	WM	w _m
V13	V ₁₃	W 3	w ₃
V14	V ₁₄	W4	v 4
V2M	V 2 m		4

(2) Auxiliary identifiers

Identifier	Description
ANS2	Array for storing D vs. NI for given N_L^2/R_L and l_A/l_3 .
ANS3	Array for storing D vs. l_4/l_3 for given N_L^2/R_L and NI .
CF	Number of convergence failures for switching time.
CFS	Cumulative number of convergence failures.
COUNT	Index number of Δt .
CT	Index of jth iteration.
FMT1	Format for the list OUT1.
FMT2	Format for the list OUT2.
FMT3	Format for the list OUT3.
GUESS	Label for location where predictions are made.
I	Index number (general).
INI	Index for NI loop.
ILOAD	Index for N_L^2/R_L loop.
IS	Index for l_4/l_3 loop.
J	Index number (general).
LEGPARF	Format for the list LEGPARL
LEGPARL	List of leg parameters
LINES	Index number of printed line.
LOOP	Label of location where iterative computation
	begins.
MATPARF	Format for the list MATPARL.
MATPARL	List of material parameters.

Identifier	Description
OUT1 SW SWITCHING	List of type-1 results. Number of output type (1, 2, or 3). Label of location where computation starts for each Δt .

(3) <u>DEFINE</u> and PROCEDURE identifiers

Identifier	Symbol	<u>Identifier</u>	Symbol
PHDOTI	$\dot{\Phi}$.	PHIDOTI 4	$\dot{\Phi}_{i}$ 4
PHDOTMA	$\dot{\phi}$	PHIDOTMAM	$\dot{\phi}_{_{mam}}$
PHIDOTIM	† ma † i m	PHIDOTMA3	$\dot{\phi}_{m\ a\ 3}$
PHIDOTI3	ф., з	PHIDOTMA4	$\dot{\phi}_{_{m\ a\ 4}}$

Program:

	001
FLUX DIVISION. SW=1: FLUX SWITCHING IN EACH LEG VS. TIME FOR GIVEN LOAD, L4/L3,	002
SW=1: FLUX SWITCHING IN EACH LEG VS. TIME FOR GIVEN BONDS TO	003
AND DOTVE:	004
SW=2: D VS. DRIVE AND LOAD FOR GIVEN L4/L3;	005
SW=2: D VS. DRIVE AND LOAD FOR GIVEN DRIVE. SW=3: D VS. L4/L3 AND LOAD FOR GIVEN DRIVE.	006
SW=3: D VS. L47L3 AND LUAD FOR STAIL PARAMETERS.; BEGIN COMMENT: DECLARATION OF MATERIAL PARAMETERS.; REAL BR, BS, HA, HQ, HN, HOPP, NU, KAPPA, HO, HB, ZETAP, KAPPAI,	007
REAL BR, BS, HA, HQ, HN, HUPP, NOT RAPPAY TO THE LEGISLE	
NUI, MI, HOI;	009
NUI, MI, HOI; COMMENT: DECLARATION OF LEG DIMENSIONS.; REAL WM, AM, LIM, LOM, LM, W3, A3, LI3, LO3, L3, W4, A4, LI4, LO4,	010
REAL WM, AM, LIM, LOM, LM, WS, AS, LIST LOST LOST	
L4, H, SI	012
COMMENT: DECLARATION OF SWITCHING PARAMETERS: COMMENT: DECLARATION OF SWITCHING PARAMETERS: REAL PHIRM, PHISM, FOPPM, FBM, FOM, ROPM, LAMBDAM, F12M, F23M, V1M REAL PHIRM, PHISM, FOPPM, FBM, F0M, ROPM, LAMBDAM, F12M, F23M, V1M REAL PHIRM, PHISM, F0PPM, FBM, F0M, ROPM, LAMBDAM, F12M, F23M, V1M	013
ROP3, LAMBDA3, F123, F233, V13, V23, LAMBDA4, F124, F234, V14, V24 PHIR4, PHIS4, F0PP4, FB4, F04, ROP4, LAMBDA4, F124, F234, V14, V24	016
PHIR4, PHIS4, FUPSA, FINANCIA CONTROL	
, LAMBDA14, C14, F014, F14; COMMENT: DECLARATION OF CIRCUIT PARAMETERS.;	018
COMMENT: DECLARATION OF CINCOLT FAMILIES	019
REAL NNR, TR, NI, NIV, TAUS; COMMENT: DECLARATION OF VARIABLES.;	020
COMMENT: DECLARATION OF VARIABLES.; REAL T, DELT, FJ, FJPR, D, TIM, FM, PHIDOTM, PHIDOTMM1, PHIDOTPRM, REAL T, DELT, FJ, FJPR, D, TIM, FM, PHIDOTM, PHIDM, TI3, F3,	021
REAL T, DELT, FJ, FJPR, D, TIM, FM, PHIDOTM, PHIDOTMMI, PHIDOTMMI, PHIDOTMMI, PHIDOTMMI, PHIDOTMAPRM, PHIDOTIPRM, PHIMM1, DELPHIM, PHIDOTIPR3, PHIDOTMAPR3, PHIDOTIPR3, PHIDOTAM1, PHIDOTAM	022
PHIDOTARRAY PHIDOTARA, PHIDOTARA, PHIDOTARA, PHIDOTIPRA, PHID	023
PHIDOT3, PHIDOT3M1, PHIDOTPR3, PHIDOTMAPR3, PHIDOTIPR3, PHIDOT4M1, PHIDM1, PHI	024
PHI3M1, DELPHI3, PHID3, DELTAPHI3, TI4, P4, PHID014, PHID4, PHID0TPR4, PHID0TPR4, PHID0TPR4, PHID4, PHID0TPR4, PHID0TPRA,	025
COMMENT: DECLARATION OF MISCELLANEOUS.; INTEGER CFS, CF, CT, COUNT, INI, ILOAD, IS, LINES, SW, I, J, K;	027 028
THESE CES. CF. CT. COUNT, INI, ILOAD, IS, LINES, SW, I, J, K,	029
LADEL CHITCHING. LOOP. GUESS!	030
DEAL ADDAY ANCOLO : 2014 ANSOLU : 201 U : 6037	030
COMMENT: DECLARATION OF OUTPUT LISTS AND FORMATS!	031
ETI F F1 4(2: 15);	032
FILE F1 4(2, 15); LIST MATPARL(BR, BS, HA, HQ, HN, HOPP, NU, KAPPA, HO, HB, ZETAP,	034
KAPPAI, NUI, MI × 106, HOI);	035
LIST LEGPARL(LIM × 103, LOM × 103, PHIRM × 108, PHISM × 108,	036
KAPPAI, NUI, MI × 106, H0I); LIST LEGPARL(LIM × 103, LOM × 103, PHIRM × 108, PHISM × 108, LAMBDAM, FOPPM, ROPM, FOM, FBM, F12M, LAMBDAIM, CIM × 106, F0IM, LAMBDAM, FOPPM, ROPM, FOM, FBM, F12M, LAMBDA3, F0PP3,	037
LAMBDAM, FOPPM, ROPM, FOM, FBM, F12M, LAMBDAIM, CIM X 1807, 1807, L13 x 183, L03 x 183, PHIR3 x 188, PHIR3 x 188, LAMBDAI, F0PP3, L13 x 183, L03 x 183, L04 x 183, L0	037
LI3 × 103, LO3 × 103, PHIR3 × 108, PHIS3 × 100, EMBOX 103, LO4 × 103, FO3, FB3, F123, LAMBDAI3, CI3 × 106, F0I3, LI4 × 103, LO4 ×	55 0

193, PHIR4 × 198, PHIS4 × 198, LAMBDA4, FOPP4, ROP4, F04, F84, 039 F124. LAMBDAI4. CI4 × 196. F014); 040 LIST OUT1(T × 106, PHIDOTM, PHIM × 108, FM, PHIDOT3, PHI3 × 108, 041 F3, PHIDOT4, PHI4 × 198, F4, NIV, CT), OUT2(NNR, FOR J + 1 STEP 1 042 UNTIL 8 DO ANS2[J], CFS), OUT3(FOR I + 1 STEP 1 UNTIL 6 DO FOR J + 043 0 STEP 1 UNTIL 9 DO ANS3[I, J]); 044 FORMAT MATPARF(X40, "M A T E R I A L PARAMETERS"/ 045 "BR=", F6.3, X2, "BS=", F6.3, X2, "HA=", F5.1, X2, "HQ=", F4.1, X2 046 , "HN=", F4.1, X2, "HOPP=", F4.1, X2, "NU=", F4.1, X2, "KAPPA=", 047 F7.1, X2, "H0=", F4.1, X2, "HB=", F5.1, X2, "ZETAP=", F8.1 / 048 "KAPPAI=", F6.1, X2, "NUI=", F4.2, X2, "MI=", F5.2, "D-6", X2, 049 "HOI=", F4.1 /); 050 FORMAT LEGPARF(X40, "L E 6 PARAMETERS" / "LIM=", F6.3, 051 X2, "LOM=", F6.3, X2, "PHIRM=", F6.3, X2, "PHISM=", F6.3, X2, 052 "LAMBDAM=", F5.3, X2, "FOPPM=", F5.3, X2, "ROPM=", F5.3, X2, 053 "FOM=", F5.3, X2, "FBM=", F5.3 / "F12M=", F5.3, X2, "LAMBDAIM=", 054 F5.3, X2, "CIM=", F5.3, X2, "F0IM=", F5.3 / "LI3=", F6.3, X2, 055 "LO3=", F6.3, X2, "PHIR3=", F6.3, X2, "PHIS3=", F6.3, X2, 056 "LAMBDA3=", F5.3, X2, "F0PP3=", F5.3, X2, "R0P3=", F5.3, X2, 057 "F03=", F5.3, X2, "FB3=", F5.3 / "F123=", F5.3, X2, "LAMBDAI3=", 058 F5.3, X2, "CI3=", F5.3, X2, "F0I3=", F5.3 / "LI4=", F6.3, X2, 059 "L04=", F6.3, X2, "PHIR4=", F6.3, X2, "PHIS4=", F6.3, X2, 060 "LAMBDA4=", F5.3, X2, "F0PP4=", F5.3, X2, "R0P4=", F5.3, X2, 061 "F04=", F5.3, X2, "FB4=", F5.3 / "F124=", F5.3, X2, "LAMBDAI4=", 062 F5.3, X2, "CI4=", F5.3, X2, "F0I4=", F5.3 /); 063 FORMAT FMT1(11 F10.4, I6), FMT2(9 F11.4, I6), FMT3(9 F11.4, I6), 064 TOP(X7, "T", X5, "PHIDOTM", X4, "PHIM", X8, "FM", X5, "PHIDOT3", 065 X4, "PHI3", X8, "F3", X5, "PHIDOT4", X4, "PHI4", X8, "F4", X7, 066 "NIV", X6 "CT"), HEAD1(X20, 067 "FLUX SWITCHING IN EACH LEG FOR NL+2/RL =", F6.3, X5, "S =", F4.2, 068 X5, "NI =", F4.2 / / X7, "T", X5, "PHIDOTM", X4, "PHIM", X8, 069 "FM", X5, "PHIDOT3", X4, "PHI3", X8, "F3", X5, "PHIDOT4", X4, 070 "PHI4", X8, "F4", X7, "NIV", X6, "CT"), HEAD2(X35, 071 "D VS. NI AND LOAD FOR S =", F4.2 / / X4, "NL+2/RL", X40, "NI", 072 X50, "CFS" / / X10, 8 F11,1), HEAD3(X35, 073 "D VS. S AND LOAD FOR NI =", F4.0 / / X4, "NL+2/RL", X40, "S", 074 X50, "CFS" / / X10, 8 F11.1); 075 COMMENT: DECLARATION OF DEFINITIONS AND PROCEDURES.; 076

DEFINE PHDOTI =

Lines PHDOTI07 through PHDOTI21 of PROCEDURE $\hat{\phi}_i(F,t,T_i,\hat{\phi}_i')$, APPENDIX B

;

DEFINE PHDOTMA=

Lines PHDTMA06 through PHDTMA47 of ${\rm PROCEDURE}~\dot{\phi}_{\rm m~a}(F,\phi,\phi_{_d},\dot{\phi}'_{_{\rm m~a}})~,~{\rm APPENDIX}~{\rm C}$

```
PHDOTIM1
REAL PROCEDURE PHIDOTIM;
BEGIN DEFINE F = FM #, TI = TIM #, PHIDOTIPRIME = PHIDOTIPRM #,
                                                                      PHDOTIM2
   PHIDOTI = PHIDOTIM #, LAMBDAI = LAMBDAIM #, CI = CIM #, FI =
                                                                      PHDOTIM3
                                                                      PHDOTIM4
   FIM #;
                                                                      PHDOTIM5
  PHDOTI
                                                                      PHDOTIM6
END PHIDOTIM:
                                                                      PHDTMAM1
REAL PROCEDURE PHIDOTMAM;
BEGIN DEFINE F = FM #, PHI = PHIM #, PHID = PHIDM #, PHIDOTMAPRIME
                                                                      PHDTMAM2
   = PHIDOTMAPRM #, PHIDOTMA = PHIDOTMAM #, LI = LIM #, LO = LOM #
                                                                      PHDTMAM3
   , PHIR = PHIRM #, PHIS = PHISM #, LAMBDA = LAMBDAM #, FOPP =
                                                                      PHDTMAM4
   FOPPM #. ROP = ROPM #. FO = FOM #. FB = FBM #. F12 = F12M #.
                                                                      PHDTMAM5
                                                                      PHDTMAM6
   F23 = F23M #+ V1 = V1M #+ V2 = V2M ##
                                                                      PHDTMAM7
   PHDOTMA
                                                                       PHDTMAM8
END PHIDOTMAM;
                                                                       PHDOTI31
REAL PROCEDURE PHIDOTI3;
BEGIN DEFINE F = F3 #, TI = TI3 #, PHIDOTIPRIME = PHIDOTIPR3 #,
                                                                       PHDOTI32
   PHIDOTI = PHIDOTI3 #, LAMBDAI = LAMBDAI3 #, CI = CI3 #, FI =
                                                                       PHDOTI33
                                                                       PHDOTI34
   F13 #1
                                                                       PHDOTI35
   PHDOTI
                                                                       PHDOTI36
END PHIDOTISE
                                                                       PHDTMA31
REAL PROCEDURE PHIDOTMAS;
BEGIN DEFINE F = F3 #, PHI = PHI3 #, PHID = PHID3 #, PHIDOTMAPRIME
                                                                       PHDTMA32
    = PHIDOTMAPR3 #, PHIDOTMA = PHIDOTMA3 #, LI = LI3 #, LO = LO3 #
                                                                       PHDTMA33
    , PHIR = PHIR3 #, PHIS = PHIS3 #, LAMBDA = LAMBDA3 #, FOPP =
                                                                       PHDTMA34
    FOPP3 #, ROP = ROP3 #, F0 = F03 #, FB = FB3 #, F12 = F123 #,
                                                                       PHDTMA35
                                                                       PHDTMA36
    F23 = F233 #, V1 = V13 #, V2 = V23 #;
                                                                       PHDTMA37
    PHDOTMA
                                                                       PHDTMA38
 END PHIDOTMAS:
                                                                       PHDOTI41
 REAL PROCEDURE PHIDOTI4;
 BEGIN DEFINE F = F4 #, TI = TI4 #, PHIDOTIPRIME = PHIDOTIPR4 #,
                                                                       PHDOTI42
    PHIDOTI = PHIDOTI4 #, LAMBDAI = LAMBDAI4 #, CI = CI4 #, FI =
                                                                       PHDOTI43
                                                                       PHDOTI44
    FI4 #;
                                                                       PHDOTI45
    PHDOTI
                                                                       PHDOTI46
 END PHIDOTI41
                                                                       PHDTMA41
 REAL PROCEDURE PHIDOTMA4;
 BEGIN DEFINE F = F4 #, PHI = PHI4 #, PHID = PHID4 #, PHIDOTMAPRIME
                                                                       PHDTMA42
    = PHIDOTMAPR4 #, PHIDOTMA = PHIDOTMA4 #, LI = LI4 #, LO = LO4 #
                                                                       PHDTMA43
     . PHIR = PHIR4 #. PHIS = PHIS4 #. LAMBDA = LAMBDA4 #. FOPP =
                                                                       PHDTMA44
    FOPP4 #. ROP = ROP4 #. F0 = F04 #. FB = FB4 #. F12 = F124 #.
                                                                       PHDTMA45
                                                                        PHDTMA46
    F23 = F234 # . V1 = V14 # . V2 = V24 # ;
                                                                        PHDTMA47
    PHDOTMA
                                                                        PHDTMA48
 END PHIDOTMA4;
                                                                        TANH0001
  REAL PROCEDURE TANH (X1);
                                                                        TANH0002
  VALUE X11
                                                                        TANH0003
  REAL X1
                                                                        TANH0004
  BEGIN REAL Y
                                                                        TANH0005
     Y + EXP (X1 + X1);
                                                                        TANH0006
     TANH + (Y - 1.0) / (Y + 1.0)
                                                                        TANH0007
  END TANHI
                                                                             077
  DEFINE MM = × 0.001 #;
                                                                             078
  COMMENT: TYPE OF OUTPUT.;
                                                                             079
  SW + 21
                                                                             080
  COMMENT: MATERIAL PARAMETERS.;
                                                                             081
  BR + 0.2300;
                                                                             082
  BS + 1.08 × BR;
```

```
HA + 310;
                                                                              083
HQ + 35.01
                                                                              084
HN + 30.01
                                                                              085
HOPP + 40.01
                                                                              086
NU + 1.30;
                                                                              087
KAPPA + 34001
                                                                              088
HO + 61.01
                                                                              089
HB + (HO \times NU - HOPP) / (NU - 1);
                                                                              090
ZETAP + KAPPA × NU ×(HB - HOPP) +(NU - 1);
                                                                              091
KAPPAI + 5921
                                                                              092
NUI + 1.38
                                                                              093
MI + 10.79-61
                                                                              094
HOI + 24.87
                                                                              095
COMMENT: CORE DIMENSIONS AND SWITCHING PARAMETERS.;
                                                                              096
H + 1.31 MM;
                                                                              097
WM + 1.016 MM;
                                                                              098
AM + H × WMI
                                                                              099
LIM + 14.363 MM;
                                                                              100
LOM + 19.151 MM;
                                                                              101
LM +(LIM + LOM) / 2;
                                                                              102
PHIRM + AM × BR;
                                                                              103
PHISM + AM × BS;
                                                                              104
FOPPM + LM × HOPP;
                                                                              105
FBM + LM × HB;
                                                                              106
FOM + LM × HO;
                                                                              107
ROPM + ZETAP × AM / LM;
                                                                              108
LAMBDAM + KAPPA × AM / LM + NU;
                                                                              109
F12M + HQ × LIM;
                                                                              110
F23M + HQ × LOM;
                                                                              111
VIM + (PHISM - PHIRM) / (HA × (LOM - LIM));
                                                                              112
V2M + (PHISM + PHIRM) × HQ / (HN × (LOM - LIM));
                                                                              113
LAMBDAIM + KAPPAI × AM / LM * NUI;
                                                                              114
CIM + MI × LM;
                                                                              115
FOIM + HOI × LIM;
                                                                              116
W3 + 0.508 MM;
                                                                              117
43 + H × W31
                                                                              118
LI3 + 4.310 MM;
                                                                              119
LO3 + 5.108 MM;
                                                                              120
L3 +(LI3 + L03) / 21
                                                                              121
PHIR3 + A3 × BR;
                                                                              122
PHIS3 + A3 × BS;
                                                                              123
FOPP3 + L3 × HOPP;
                                                                              124
FB3 + L3 × HB;
                                                                              125
F03 + L3 × H0;
                                                                              126
ROP3 + ZETAP × A3 / L3;
                                                                              127
LAMBDA3 + KAPPA × A3 / L3 * NU;
                                                                              128
F123 + HQ x LI3;
                                                                              129
F233 + HQ × L03;
                                                                              130
V13 +(PHIS3 - PHIR3) /(HA ×(LO3 - LI3));
                                                                              131
V23 + (PHIS3 + PHIR3) × HQ / (HN × (LO3 - LI3));
                                                                              132
LAMBDAI3 + KAPPAI × A3 / L3 * NUII
                                                                              133
CI3 + MI × L3;
                                                                              134
F013 + H01 × L13;
                                                                              135
W4 + 0.508 MM;
                                                                              136
A4 + H × W41
                                                                              137
PHIR4 + A4 × BR;
                                                                              138
PHIS4 + A4 × BS;
                                                                              139
IF SW = 3 THEN
                                                                              140
BEGIN WRITE(F1, MATPARF, MATPARL);
                                                                              141
   WRITE(F1, HEAD3, 100.0, FOR S + 1 STEP 2 UNTIL 9 DO S);
                                                                              142
                                                                              143
END:
                                                                              144
IS + 0;
                                                                              145
FOR S + 1.83 DO
                                                                              146
```

```
· 147
BEGIN IS + IS + 1;
   LI4 + 5 × LI3;
                                                                              148
   L04 + S × L03;
                                                                              149
                                                                              150
   L4 +(LI4 + LO4) / 2;
   FOPP4 + L4 × HOPP1
                                                                              151
   FB4 + L4 × HB1
                                                                              152
   F04 + L4 × H0;
                                                                              153
   ROP4 + ZETAP × A4 / L41
                                                                              154
   LAMBDA4 + KAPPA × A4 / L4 * NU;
                                                                              155
   F124 + HQ × LI4;
                                                                              156
   F234 + HQ × L04;
                                                                              157
   V14 +(PHIS4 - PHIR4) /(HA ×(L04 - L14));
                                                                              158
   V24 + (PHIS4 + PHIR4) \times HQ / (HN \times (LO4 - LI4));
                                                                              159
   LAMBDAI4 + KAPPAI × A4 / L4 * NUI;
                                                                              160
   CI4 + MI × L4;
                                                                              161
   FOI4 + HOI × LI4;
                                                                              162
   IF SW = 2 THEN
                                                                              163
   BEGIN WRITE(F1[PAGE]);
                                                                              164
      WRITE(F1, MATPARF, MATPARL);
                                                                              165
      WRITE(F1, LEGPARF, LEGPARL);
                                                                              166
      WRITE(F1, HEAD2, S, FOR NI + 1.1, 1.3, 1.5, 1.7, 2.0, 3.0,
                                                                              167
      4.0, 5.0 DO NI);
                                                                              168
      LINES + 16;
                                                                              169
   END:
                                                                              170
   COMMENT: CIRCUIT PARAMETERS.;
                                                                              171
   TR + 0.089-6;
                                                                              172
   ILOAD + 0;
                                                                              173
   FOR NNR + 0, 1.0, 3.962, 9.524 DO
                                                                              174
   BEGIN ILOAD + ILOAD + 1;
                                                                              175
      CFS + 0;
                                                                              176
      INI + OF
                                                                              177
      FOR NI + 1.1, 1.3, 1.5, 1.7, 2.0, 3.0, 4.0, 5.0 DO
                                                                              178
      BEGIN INI + INI + 1;
                                                                              179
          IF SW = 1 THEN
                                                                              180
          BEGIN WRITE(F1[PAGE]);
                                                                              181
             WRITE(F1, MATPARF, MATPARL);
                                                                              182
             WRITE(F1, LEGPARF, LEGPARL);
                                                                              183
             WRITE(F1, HEAD1, NNR, S, NI);
                                                                              184
             LINES + 16;
                                                                              185
          END:
                                                                              186
          COMMENT: INITIAL CONDITIONS.;
                                                                              187
          T + 0:
                                                                              188
          PHIM + - PHIRM;
                                                                              189
          PHI3 + - PHIR3;
                                                                              190
          PHI4 + - PHIR4;
                                                                              191
          FM + F3 + F4 + 01
                                                                              192
          CF + COUNT + 0;
                                                                              193
          PHIDOTM + PHIDOT3 + PHIDOT4 + 0;
                                                                              194
          COMMENT: COMPUTATION OF SWITCHING.
                                                                              195
          TAUS + 1.65 × PHIRM × ((1 / LAMBDAM +(1 / NU) + 1 / LAMBDA3
                                                                              196
          *(1 / NU)) /(NI - FOPPM - FOPP3)) * NU;
                                                                              197
          DELT + TAUS / 200;
                                                                              198
                                                                              199
          SWITCHING: CT + 0;
          T + T + DELT;
                                                                              200
          NIV + NI \times(IF T < TR THEN(1 - COS(3.141592654 \times T / TR))
                                                                              201
                                                                              202
          / 2 ELSE 1);
          PHIMM1 + PHIM;
                                                                              203
          PHIDOTMM1 + PHIDOTM;
                                                                              204
          PHI3M1 + PHI3;
                                                                              205
          PHIDOT3M1 + PHIDOT3;
                                                                              206
          PHI4M1 + PHI4;
                                                                              207
          PHIDOT4M1 + PHIDOT4;
                                                                              208
          F4M1 + F4;
                                                                              209
          GUESS: PHIM + PHIMM1 + DELPHIM;
                                                                              210
```

```
PHI3 + PHI3M1 + DELPHI3;
                                                                           211
        PHI4 + PHI4M1 + DELPHI4:
                                                                           212
        F4 + F4M1 + DELF4;
                                                                           213
        LOOP: CT + CT + 1;
                                                                            214
                                                                           215
        F4 + F4 + DF4;
                                                                           216
        FI4 + F014 × TANH(F4 / F014);
        PHIDOT4 + PHIDOTMA4 + PHIDOTI4;
                                                                           217
        DELPHI4 + DELT ×(PHIDOT4 + PHIDOT4M1) / 21
                                                                           218
        PHI4 + PHI4M1 + DELPHI4;
                                                                           219
        F3 + F4 + NNR × PHIDOT4;
                                                                           220
                                                                           221
        FI3 + F013 × TANH(F3 / F013);
        PHIDOT3 + PHIDOTMA3 + PHIDOTI3;
                                                                           222
        DELPHI3 + DELT ×(PHIDOT3 + PHIDOT3M1) / 2;
                                                                           223
                                                                           224
        PHI3 + PHI3M1 + DELPHI3;
        FM + NIV - F3;
                                                                           225
        FIM + FOIM × TANH(FM / FOIM);
                                                                            226
        PHIDOTM + PHIDOTMAM + PHIDOTIM;
                                                                            227
         DELPHIM + DELT ×(PHIDOTM + PHIDOTMM1) / 21
                                                                            228
         PHIM + PHIMM1 + DELPHIM;
                                                                            229
         DELF4 + F4 - F4M1;
                                                                            230
         FJ + PHIDOT4 + PHIDOT3 - PHIDOTM?
                                                                            231
         PHIDOTPRM + PHIDOTIPRM + PHIDOTMAPRM;
                                                                            232
         PHIDOTPR3 + PHIDOTIPR3 + PHIDOTMAPR3;
                                                                            233
         PHIDOTPR4 + PHIDOTIPR4 + PHIDOTMAPR4;
                                                                            234
         FJPR + (PHIDOTPRM + PHIDOTPR3) × (1 + NNR × PHIDOTPR4) +
                                                                            235
         PHIDOTPR4;
                                                                            236
         IF FJPR = 0 THEN FJPR + 19-20;
                                                                            237
         DF4 + IF SIGN(DF4) = SIGN(- FJ / FJPR) THEN - FJ / FJPR
                                                                            238
         ELSE - 0.5 × FJ / FJPR;
                                                                            239
         IF ABS(FJ) > 0.0001 × PHIRM / TAUS AND CT < 20 THEN 60 TO
                                                                            240
         LOOP:
                                                                            241
         IF CT = 20 THEN CF + CF + 1;
                                                                            242
         IF COUNT MOD 5 = 0 AND SW = 1 THEN
                                                                            243
         BEGIN WRITE(F1, FMT1, OUT1);
                                                                            244
            LINES + LINES + 1;
                                                                            245
            IF LINES MOD 50 = 0 THEN
                                                                            246
            BEGIN WRITE(F1[PAGE]);
                                                                            247
               WRITE(F1, TOP);
                                                                            248
                                                                            249
            END!
         END:
                                                                            250
         COUNT + COUNT + 1;
                                                                            251
         IF PHIM < 0 AND PHIDOTM > 0.0001 OR PHIM < - 0.99 × PHIRM
                                                                            252
         THEN GO TO SWITCHING!
                                                                            253
                                                                            254
         DELTAPHI3 + PHI3 + PHIR3;
         DELTAPHI4 + PHI4 + PHIR47
                                                                            255
         IF DELTAPHI4 = 0 THEN D + 1020 ELSE D + DELTAPHI3 /
                                                                            256
                                                                            257
         DELTAPHI4:
         CFS + CFS + CFI
                                                                            258
         IF SW = 2 THEN ANS2[INI] + D;
                                                                            259
         IF SW = 3 THEN ANS3[ILOAD, IS] + D;
                                                                            260
      END NILOOP;
                                                                            261
      IF SW = 2 THEN WRITE(F1, FMT2, OUT2);
                                                                            262
      IF SW = 3 THEN
                                                                            263
      BEGIN ANS3EILOAD, 03 + NNR;
                                                                            264
         ANS3[ILOAD, 9] + ANS3[ILOAD, 9] + CFS
                                                                            265
      END!
                                                                            266
  END LOADLOOP!
                                                                            267
                                                                            268
END SLOOP!
IF SW = 3 THEN WRITE(F1, FMT3, OUT3);
                                                                            269
END.
                                                                            270
```

REFERENCES

- D. Nitzan, "Flux Switching in Multipath Cores," Report 1, for Jet Propulsion Laboratory, Contract 950095 under NASw-6, SRI Project 3696, Stanford Research Institute, Menlo Park, California (November 1961).
- D. Nitzan and V. W. Hesterman, "Flux Switching in Multipath Cores," Report 2, for Jet Propulsion Laboratory, Contract 950095 under NASw-6, SRI Project 3696, Stanford Research Institute, Menlo Park, California (November 1962).
- 3. D. Nitzan and V. W. Hesterman, "Flux Switching in Multipath Cores," Report 3, for Jet Propulsion Laboratory, Contract 950095 under NASw-6, SRI Project 3696, Stanford Research Institute, Menlo Park, California (June 1964).
- 4. N. Cushman and D. Park, "Reversal of a Loaded Ferromagnetic Core," IRE Trans. on Component Parts, vol. CP-7, pp. 117-124 (December 1960).
- 5. R. W. McKay, "The Reversible Component of Magnetization," J. Appl. Phys., Supplement to vol. 30.4, pp. 56S-57S (April 1959).
- 6. R. L. Conger and F. C. Essig, "Magnetization Reversal in Thin Films at Low Fields," J. Appl. Phys., vol. 28, pp. 855-858 (August 1957).
- 7. W. E. Milne, Numerical Solution of Differential Equations (John Wiley & Sons, Inc., New York, 1950).
- 8. P. Henrici, Elements of Numerical Analysis (John Wiley & Sons, Inc., New York, 1963), Chapter 4.
- J. B. Scarborough, Numerical Mathematical Analysis (The Johns Hopkins Press, 1950), Chapter 9.
- A. F. Pixley and Anne G. Macek, "A B5000 ALGOL-60 Runge-Kutta-Nystrøm Starting Procedure for Use with Milne Type Predictor-Connectors in Solving Systems of Ordinary Differential Equations," Burroughs Technical Bulletin MRS-113 (August 1, 1963).
- PROCEDURE ADAMS (X, Y, YPRIME, N, EU, EL, EPS, H, HMIN, DERIV) in the computer-program library at Stanford Research Institute, Menlo Park, California.
- 12. D. Nitzan, "Flux Division in a Saturable Multipath Core," IEEE Trans. on Electronic Computers, vol. EC-13, pp. 272-277 (June 1964).
- 13. "Burroughs B5500 Information Processing System Extended ALGOL Reference Manual," Burroughs Corporation, Detroit, Michigan (1964).
- N. Menyuk and J. B.Goodenough, "Magnetic Materials for Digital-Computer Components.

 A Theory of Flux Reversal in Polycrystalline Ferromagnetics," J. Appl. Phys., vol. 26, pp. 8-18 (January 1955).

Adams method of solving differential equations, 67, 164-165	flux division, 72-89 approximate τ_s , 76-77
Di .	basic equations, 74 computer program, 77-78, 167-175 D vs. l_4/l_3 and load, 83, 85, 87
Binary counter, core-diode-transistor, 49-72 analysis of Mode I, 56-61 basic equations, 56-58 equivalent circuit, 57 simplifying assumptions, 56 transcendental solution of currents, 58-60	drive current, 77 effect of leg dimensions on switching parameters, 76 experimental verification, 81-88 D vs. NI and load, 83-84, 86
circuit, 52, 64 computation of Mode I variables, 61-71	$\phi(t)$ waveforms, 82-83, 86 method of computation, 74-75
comparing results of two methods, 68, 69, 70 limitations of, 68-69 Runge-Kutta and Adams method, 66-68 computer program, 67, 159-166 simple method, 61-66 computer program, 61-64, 153-158	initial $\phi(t)$ of unloaded core, 22-34 comparison with experimental data, 26-34 computer program, 24, 141-146 core and circuit parameters, 25 drive current, 22-24 results, 26-34
results, 64-66 variations of $\phi_1(F_1)$ and $\phi_2(F_2)$, 70, 71	loaded core, 45-49 computer program, 147-151
conditions for proper operation, 55 drive currents, 52-64 operation, modes of, 49, 52-54	core data, 48 error in Rep. 3, 46 inductive load, 47 Newton's method, 48 noninductive load, 47-48
	$\phi_p(k)$ and $t_p(k)$, 96
Chopper to measure $F(t)$, 99	Computed:
Circuit data, experimental: core-diode-transistor binary counter, 64 flux division, 81	core-diode-transistor binary counter, Mode I: minimum voltage, 70
initial $\dot{\phi}(t)$, 25	time variables, 64 - 66 $\phi_1(F_1)$ and $\phi_2(F_2)$, 70 , 71
CLEAR pulse: amplitude, 99, 109, 119 duration, 109 sequence, 99, 109, 119	flux division: D vs. l_4/l_3 and load, 83, 85, 87 D vs. NI and load, 83-84, 86
Coefficient, temperaturesee Temperature coefficient	$\phi(t)$ waveforms, 82-83, 86 initial $\dot{\phi}(t)$ of unloaded core:
Comparison between computed and experimental results:	peak ϕ_{ip} vs. F_D and T_r , 40-41
initial $\dot{\phi}(t)$, 26-34	$\phi(t)$ components, 37
loaded core, 49-51	$\phi(t)$ waveforms, 26-34
Components of ϕ , 4 computed, 37	loaded core, $\dot{\phi}(t)$ and $i_L(t)$, 49-51
experimental verification of, 18-21, 20-34 very low, 39, 41	Computer program: core-diode-transistor binary counter: simple method, 61-64, 153-158
Composition of Core E-6 material, 20	nunge-Kutta and Adams method, 67, 159-166
Computation of:	elastic ϕ , ϕ_{ϵ} , 16,133
core-diode-transistor binary counter, Mode I, 61-71	flux division, 77-81, 167-175
data:	inelastic decaying ϕ , ϕ_i , 17, 135
circuit, 64 core_100SC1, 64	initial $\phi(t)$, 24, 141-146 loaded core, 147-151
Runge-Kutta and Adams method, 66-68 computer program, 67, 159-166	main $\dot{\phi}$, $\dot{\phi}_{ma}$, 17-18, 137-138
simple method, 61-66 computer program, 61-64, 153-158 results, 64-66	Cooling for measuring temperature effects, 107

```
Duration of CLEAR pulses, 109
Core:
  E-6:
     composition, 20
     initial \phi(t) results, 26-34
                                                                        Easy axes, statistical variation of, 119
     initial \phi(t) test, 18-20 ramp-F(t) switching, 99
                                                                        Elastic \phi, 4-5
     switching parameters, 25
                                                                           future investigation, 43
                                                                           computed \dot{\phi}_{\epsilon}(t), 37
     dimensions, 108
     switching parameters, 108
                                                                           computer program, 16, 133 conclusions about model, 42-43
   J-1:
                                                                           viscous damping, 35
     dimensions, 48
     switching parameters, 48
                                                                        Equipment in:
   K-1:
                                                                           initial \phi(t) test, 21 ramp F(t) experiments, 99
     dimensions, 108
     switching parameters, 108
                                                                         Error in previous computation, 46
      dimensions, 82
      switching parameters, 81-82
                                                                         Error in static \phi(F), 110, 111
   100SCl:
      dimensions, 64
                                                                         Experiment, flux division, 73
      switching parameters, 64
                                                                            D vs. NI and load, 83-84, 86
 Core-diode-transistor binary counter--see Binary
              counter, core-diode-transistor
                                                                            \phi (t) waveforms, 82-83, 86
                                                                         Experimental waveforms:
 Core holder, 20
                                                                            binary counter, 64-66
 Correction in ramp-F(t) switching parameters:
                                                                            loaded core, \phi(t) and i_L(t), 49-51
    F_0'', 101, 102, 105, 131
                                                                            ramp-F(t), 99
    λ, 101, 102, 104, 128, 131
                                                                            \phi(t) for ramp-F(t), 100, 101
    \nu, 103
                                                                            unloaded thin ring, \phi(t), 26-34, 36-37
 Counter, binary-see Binary counter, core-diode-
              transistor
                                                                          Experiment: ramp-F(t) switching, 99, 123
  Crossing of curves: kt_{p}(k), 103, 106
                                                                             static \phi(F) vs. temperature, 107
    t_p(k), 127, 128, 130
                                                                            \phi_p(F) vs. temperature, 118
    \ddot{\phi}_p(k), 124
                                                                             \dot{\phi}(t) of unloaded thin ring, 18-21, 26-34
                                                                               Equipment, 20-21 results, 26-34
                                                                               ringing of \phi(t), 19-20
  Current drive--see Drive current
  Current drivers in:
     initial \dot{\phi}(t) test, 21 ramp-F(t) switching, 99
                                                                           Fall time for ramp-F(t) switching, 99
                                                                           Flux change:
                                                                             due to \phi_{\epsilon}, 39
   Damping, viscous:
for wall motion, 119
                                                                             due to \phi_i, 39, 41
                                                                             \triangle \phi_d, 41
     of \phi_{\epsilon}, 35
                                                                           Flux division, computation of, 72-89 analysis, 74-77
   Differential equations, numerical solutions of,
     comparing results of two methods, 68, 69, 70
Runge-Kutta and Adams methods, 66-68, 159-166
simple method, 46-48, 61-66
                                                                                basic equations, 74
                                                                                calculation of switching parameters, 75-76 drive current, 77
                                                                                estimation of \tau_s, 76-77
   Dimensions of cores--see Cores, dimensions
                                                                              method of computation, 74-75
computer program, 77-81, 167-175
multiple output, 78
program outline, 78-81
   Dimensions of leg, effects on switching parameters--
                see switching parameter effects of
                geometry on
    Domain nucleations, 119
                                                                                 \phi PROCEDUREs, 77-78
                                                                              experiment, 73 experimental verification, 81-88
    Drive current:
      binary counter, 52, 64-66 flux division, 73, 77
                                                                                 circuit data, 81
       initial \phi(t), 22-24, 26-34
                                                                                 core S:
                                                                                   material parameters, 81
      ramp F(t) switching, 99,100
                                                                                    switching parameters, 82
    Driver in initial \phi(t) test, 21
```

•			
Flux division, computation ofcontinued D vs. l_4/l_3 and load, 83, 85, 87	modified model, 7 previous model, 6		
results:	physical interpretation, 6		
D vs. NI and load, 83-84, 86	Interrupted-F experiments, 1-3		
$\phi(t)$ waveforms, 82-83, 86 limitations of previous calculation, 72	Iterative solution, Newton's method: one variable, 48		
Flux reference, 109	two variables, 58-60		
Flux switching:			
<pre>components, 4, 37 in core diode-transistor binary counter: partial, 53-55, 70-71 complete, 70-71 interrupted-F experiment, 1-3</pre>	Linearity in ramp-F(t), 99 Loaded-core computation: computer program, 147-151		
Flux switching models, 4-15	core data, 48 effect of decreasing $F(t)$ on λ and β_p , 49 error in Report 3 results, 46 inductive load, 47 results, 49-51 load, 45 loop equation, 46 Newton's method, 48		
analogy between ϕ_1 and ϕ_{ma} , 36 elastic, 4-5 inelastic, decaying, 6-11 inelastic, main, 11-12 use of, in ramp- F switching, 91, 92, 98, 106, 119, 123, 124			
Future investigation: computer programs for magnetic circuits, 89 flux-switching models, 43 ramp- $F(t)$ switching effects, 105, 128, 132	noninductive load, 47-48 results for inductive load, 49-51 transcendental solution, 48		
	Magnetization, saturation, 119		
Geometry effect on switching parameters-see Switching parameters, effects of geometry on	Main inelastic component, $\dot{\phi}_{ma}$, 11-12 computed $\dot{\phi}_{ma}(t)$, 37		
Grains in ferrite, 119	computer program, 17-18, 137-138		
Graticule of oscilloscope, 99	model, 11		
• •	analogy with ϕ ; model, 36		
	Material composition, core E-6, 20		
Heating of transistors, 107	Minimum voltage supply, core-diode-transistor binary counter, 55		
History effects, removal of, 119	Models, flux switchingsee Flux-switching models		
Hyperbolic $B(H)$, 111	Modes of operation, core-diode-transistor binary counter, 49, 52-54 analysis of Mode I, 56-61 variation of $\phi_1(F_1)$ and $\phi_2(F_2)$, 70, 71		
Inductive load, computation of, 47 results, 49-51	Multiple initial $\phi(t)$ oscillograms, 36-37		
Inelastic $\dot{\phi}$:			
approximate model for $\phi_i^{}+\phi_{_{Ra}^{}}^{},\ 14$ computer program, 139-140 modified models for $\phi_i^{},\ 7$	Newton's method of transcendental solution, 48 Negative $F_{0r}^{''}$, 127		
computer program, 17, 135	Nonlinearity in ramp- $F(t)$, 99		
modified model for $\dot{\phi}_{-a}$, 11-12	Nucleation of domains, 119		
computer program, 17-18, 137-138	Numerical computationsee Computation		
previous model, 11	Numerical solution of differential equations:		
Inelastic decaying ϕ component, ϕ_i : computed $\phi_i(t)$, 37	Runge-Kutta and Adams methods, 66-68, 159-166 simple method, 46-48, 61-66		
computer program 17 135			
computer program, 17, 135 conclusions, 42-43	Operation, core-diode-transistor binary counter,		
experimental observation, 1-3 future investigation, 43	49, 52-54		
geometry effect on switching parameters, 9-10 models, 6-11 analogy with model for ϕ , 36	Oscillograms of $\phi(t)$: binary counter, core-diode-transistor, 64-66 flux-division experiment, 82-83, 86		
for ramp F, 7-9	initial $\dot{\phi}(t)$, multiple exposure, 36-37 initial $\dot{\phi}(t)$ test, 26-34		

Squareness ratio, 110 Oscillograms of $\phi(t)$ --continued interrupted-F experiment, 1-3 Statistical variation of easy axes, 119 loaded core, 49-51 Static $\phi(F)$: ramp-F(t) switching, 101 temperature, 107 effect of very low $\dot{\phi}$ component on, 39, 41 Oscilloscope: initial $\phi(t)$ experiment, 21 drive, 98, 101, 102, 118, 123, 130 parameters, 102, 123, 128, 130 ramp-F(t) experiments, 99 Supply voltage, core-diode-transistor binary in initial $\phi(t)$ test, 21 counter, 52, 53, 54 to determine effects of temperature, 107 Switching, flux -- see Flux switching Switching parameters of: Parameters, switching--see Switching parameters Core E-6, 25, 35-36 Core I-4, 108 Core J-1, 48 Core S, 81-82 Core 100SC1: PARTIAL-SET pulse, 109, 114-118 Partially-set state, 107,117,119 Partial switching in core-diode-transistor binary Core K-1, 108 counter, 53-55 in core-diode-transistor binary counter, 64 Peak $\dot{\phi}_i$, computed vs. F_D and T_r , 40-41 Switching parameters in model: ϕ_{ma} , 11 Permeability, 110 "effect of decreasing F(t), 49 Program, computer--see Computer program ϕ_i , 7, 9-11, 35-36 Pulse, drive: amplitude, 99, 109, 119, 123 duration, 109 sequence, 99, 119 effect on rise time, 35 ϕ_{ϵ} , 4-5 Switching parameters, effects of geometry on: ϕ_i , 9-10, 76 ϕ_{ma} , 76 Radius, core, 108, 111 ϕ_{ϵ} , 4 Ramp mmf: Switching parameters, variation of, 106, 125, 128, 131drive, 91, 99 effect on ϕ_i , 7-9 Switching time, approximate, 62, 76-77 switching parameters, 102, 105, 108, 129 $\phi_{p_{\, {
m calc}}}$ to $\phi_{p_{\, {
m exp}}}$, 102 Table, core data: I, 82 II, 108 ϕ_r to ϕ_s , 111 H_o to H_n , 111 Temperature: Reference, Voltage, 99 coefficients, 108, 130 control, 107 Regions in $\dot{\phi}_{p}(F)$, 92, 97, 98, 103 effects on: static $\phi(F)$, 107 Ringing $\phi(t)$, 19-20 $t_{p}(k), 123$ $\phi_{p}(F), 118$ Rise time in measuring $\phi_{p}(F)$, 119 Rise time effect on: λ_i and C_i , 35 $\dot{\phi}_{p}(k), 123$ TEST pulse, 109, 117 $\dot{\phi}_{ip}$, 7-9, 40-41 Threshold field for ϕ_i , 10-11 Runge-Kutta method of solving differential equations, 67, 163-164 Transcendental solution by Newton's method: one variable, 48 two variables, 58-60 Transistor: drivers, 99 SET pulse, 99, 109, in a binary counter, 64 Shift, vertical, in: $t_p(k)$, 125, 132 $\phi_p(k)$, 101 Ultrasonically cut, Core I-4, 107, 108 Slope of: $kt_p(k)$, log-log, 94, 123 Uniformity in a core, 111 Uniformity of cores, 107 ramp-F(t), 99

 $\dot{\phi}_{p}(k)$, log-log, 94

Viscous damping effect on $\dot{\phi}_\epsilon$, 35 Voltage reference, 99

Waveform--see Experimental waveforms Wing: in Static $\phi(F)$, 111, 117 sharpness in Static $\phi(F)$, 114